Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The Einstein-Boltzmann system and positivity

MPG-Autoren
/persons/resource/persons49385

Lee,  Ho
Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons20696

Rendall,  Alan D.
Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1203.2471
(Preprint), 285KB

S0219891613500033.pdf
(beliebiger Volltext), 403KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lee, H., & Rendall, A. D. (2013). The Einstein-Boltzmann system and positivity. Journal of hyperbolic differential equations, 77(1), 77-104. doi:10.1142/S0219891613500033.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-4D9D-D
Zusammenfassung
The Einstein-Boltzmann system is studied, with particular attention to the non-negativity of the solution of the Boltzmann equation. A new parametrization of post-collisional momenta in general relativity is introduced and then used to simplify the conditions on the collision cross-section given by Bancel and Choquet-Bruhat. The non-negativity of solutions of the Boltzmann equation on a given curved spacetime has been studied by Bichteler and by Tadmon. By examining to what extent the results of these authors apply in the framework of Bancel and Choquet-Bruhat, the non-negativity problem for the Einstein-Boltzmann system is resolved for a certain class of scattering kernels. It is emphasized that it is a challenge to extend the existing theory of the Cauchy problem for the Einstein-Boltzmann system so as to include scattering kernels which are physically well-motivated.