Researcher Portfolio

 
   

Viezzer, Eleonora

Physics of the Plasma Edge (E2), Max Planck Institute for Plasma Physics, Max Planck Society, Plasma Edge and Wall (E2M), Max Planck Institute for Plasma Physics, Max Planck Society, Tokamak Edge and Divertor Physics (E2), Max Planck Institute for Plasma Physics, Max Planck Society  

 

Researcher Profile

 
Position: Tokamak Edge and Divertor Physics (E2), Max Planck Institute for Plasma Physics, Max Planck Society
Position: Plasma Edge and Wall (E2M), Max Planck Institute for Plasma Physics, Max Planck Society
Position: Physics of the Plasma Edge (E2), Max Planck Institute for Plasma Physics, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons110704

External references

 

Publications

 
  (1 - 25 of 46)
 : Tang, T.-Y.-D., & Huang, X. (2023). Artificial Cells: From Basic Assembly to Directed Functionality. Small methods, 7(12): e2301446. doi:10.1002/smtd.202301446. [PubMan] : Gonzales, D. T., Suraritdechachai, S., Zechner, C., & Tang, T.-Y.-D. (2023). Bidirectional Communication between Droplet Interface Bilayers Driven by Cell-Free Quorum Sensing Gene Circuits. ChemSystemsChem, 5: e20230002, pp. 1-1. doi:10.1002/syst.202300029. [PubMan] : Lauber, N., Tichacek, O., Bose, R., Flamm, C., Leuzzi, L., Tang, T.-Y.-D., Ruiz-Mirazo, K., & Martino, D. D. (2023). Statistical mechanics of biomolecular condensates via cavity methods. iScience, 26(4): 106300. doi:10.1016/j.isci.2023.106300. [PubMan] : Mayr, C., Mittag, T., Tang, T.-Y.-D., Wen, W., Zhang, H., & Zhang, H. (2023). Frontiers in biomolecular condensate research. Nature cell biology, 25(4), 512-514. doi:10.1038/s41556-023-01102-2. [PubMan] : Wang, X., Wu, S., Tang, T.-Y.-D., & Tian, L. (2022). Engineering strategies for sustainable synthetic cells. Trends in Chemistry, 4(12), 1106-1120. [PubMan] : Zambrano, A., Fracasso, G., Gao, M., Ugrinic, M., Wang, D., Appelhans, D., deMello, A., & Tang, T.-Y.-D. (2022). Programmable synthetic cell networks regulated by tuneable reaction rates. Nature communications, 13(1): 3885. doi:10.1038/s41467-022-31471-5. [PubMan] : Wollny, D., Vernot, B., Wang, J., Hondele, M., Safrastyan, A., Aron, F., Micheel, J., He, Z., Hyman, A., Weis, K., Camp, J. G., Tang, T.-Y.-D., & Treutlein, B. (2022). Characterization of RNA content in individual phase-separated coacervate microdroplets. Nature communications, 13(1): 2626. doi:10.1038/s41467-022-30158-1. [PubMan] : Iglesias-Artola, J. M., Drobot, B., Kar, M., Fritsch, A., Mutschler, H., Tang, T.-Y.-D., & Kreysing, M. (2022). Charge-density reduction promotes ribozyme activity in RNA-peptide coacervates via RNA fluidization and magnesium partitioning. Nature chemistry, 14(4), 407-416. doi:10.1038/s41557-022-00890-8. [PubMan] : Tang, D. (2022). Cell scientist to watch - Dora Tang. Journal of cell science, 135(5): jcs259851. doi:10.1242/jcs.259851. [PubMan] : Gonzales, D. T., Yandrapalli, N., Robinson, T., Zechner, C., & Tang, T.-Y.-D. (2022). Cell-Free Gene Expression Dynamics in Synthetic Cell Populations. ACS synthetic biology, 11(1), 205-215. doi:10.1021/acssynbio.1c00376. [PubMan] : Ianeselli, A., Tetiker, D., Stein, J., Kühnlein, A., Mast, C., Braun, D., & Tang, T.-Y.-D. (2022). Non-equilibrium conditions inside rock pores drive fission, maintenance and selection of coacervate protocells. Nature chemistry, 14(1), 32-39. doi:10.1038/s41557-021-00830-y. [PubMan] : Vay, K. L., Song, E. Y., Ghosh, B., Tang, T.-Y.-D., & Mutschler, H. (2021). Enhanced Ribozyme-Catalyzed Recombination and Oligonucleotide Assembly in Peptide-RNA Condensates. Angewandte Chemie (International ed. in English), 60(50), 26096-26104. doi:10.1002/anie.202109267. [PubMan] : Ghosh, B., Bose, R., & Tang, T.-Y.-D. (2021). Can coacervation unify disparate hypotheses in the origin of cellular life? Current Opinion in Colloid & Interface Science, 52: 101415. doi:10.1016/j.cocis.2020.101415. [PubMan] : Moreau, N. G., Martin, N., Gobbo, P., Tang, T.-Y.-D., & Mann, S. (2020). Spontaneous membrane-less multi-compartmentalization via aqueous two-phase separation in complex coacervate micro-droplets. Chemical communications (Cambridge, England), 56(84), 12717-12720. doi:10.1039/d0cc05399f. [PubMan] : Gonzales, D. T., Zechner, C., & Tang, T.-Y.-D. (2020). Building synthetic multicellular systems usingbottom–up approaches. Current Opinion in Systems Biology, 24, 56-63. doi:10.1016/j.coisb.2020.10.005. [PubMan] : Gorochowski, T. E., Hauert, S., Kreft, J.-U., Marucci, L., Stillman, N. R., Tang, T.-Y.-D., Bandiera, L., Bartoli, V., Dixon, D. O., Fedorec, A. J., Fellermann, H., Fletcher, A. G., Foster, T., Giuggioli, L., Matyjaszkiewicz, A., McCormick, S., Olivas, S. M., Naylor, J., Denniss, A. R., & Ward, D. (2020). Toward Engineering Biosystems With Emergent Collective Functions. Frontiers in bioengineering and biotechnology, 8: 705. doi:10.3389/fbioe.2020.00705. [PubMan] : Beneyton, T., Love, C., Girault, M., Tang, T.-Y.-D., & Baret, J.-C. (2020). High-Throughput Synthesis and Screening of Functional Coacervates Using Microfluidics. ChemSystemsChem, 2(6): e2000022, pp. 1-1. doi:10.1002/syst.202000022. [PubMan] : Love, C., Steinkühler, J., Gonzales, D. T., Yandrapalli, N., Robinson, T., Dimova, R., & Tang, T.-Y.-D. (2020). Reversible pH-Responsive Coacervate Formation in Lipid Vesicles Activates Dormant Enzymatic Reactions. Angewandte Chemie (International ed. in English), 59(15), 5950-5957. doi:10.1002/anie.201914893. [PubMan] : Beneyton, T., Krafft, D., Love, C., Girault, M., Bednarz, C., Kleineberg, C., Wölfer, C., Ivanov, I., Vidaković-Koch, T., Sundmacher, K., Tang, D., & Baret, J.-C. (2020). Droplet-based microfluidics for bottom-up synthetic biology. In 23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2019) (pp. 14-15). Red Hook NY USA: Curran Associates. [PubMan] : Love, C., Steinkühler, J., Gonzales, D., Yandrapalli, N., Robinson, T., Dimova, R., & Tang, D. (2020). Reversible pH responsive coacervate formation in lipid vesicles activates dormant enzymatic reactions. Angewandte Chemie, 132(15), 6006-6013. doi:10.1002/ange.201914893. [PubMan] : Gorochowski, T. E., Hauert, S., Kreft, J.-U., Marucci, L., Stillman, N. R., Tang, T.-Y.-D., Bandiera, L., Bartoli, V., Dixon, D. O., Fedorec, A. J., Fellermann, H., Fletcher, A. G., Foster, T., Giuggioli, L., Matyjaszkiewicz, A., McCornick, S., Montes Olivas, S., Naylor, J., Denniss, A. R., & Ward, D. (2020). Towards engineering biosystems with emergent collective functions. Preprints. doi:10.20944/preprints202005.0058.v1. [PubMan] : Love, C., Steinkühler, J., Gonzales, D., Yandrapalli, N., Robinson, T., Dimova, R., & Tang, D. (2020). Reversible pH responsive coacervate formation in lipid vesicles activates dormant enzymatic reactions. Angewandte Chemie, International Edition in English. doi:10.1002/anie.201914893. [PubMan] : Gonzales, D. T., Tang, T.-Y.-D., & Zechner, C. (2019). Moment-based analysis of biochemical networks in a heterogeneous population of communicating cells. In C. A. Canudas de Wit (Ed.), 2019 IEEE 58th Conference on Decision and Control (CDC) (pp. 939-944). Piscataway, N.J.: IEEE. [PubMan] : Mutschler, H., Robinson, T., Tang, T.-Y.-D., & Wegner, S. (2019). Special Issue on Bottom-Up Synthetic Biology. Chembiochem: a European journal of chemical biology, 20(20), 2533-2534. doi:10.1002/cbic.201900507. [PubMan] : Mutschler, H., Robinson, T., Tang, D., Wegner, S., & Wegner, S. (2019). Special Issue on Bottom-Up Synthetic Biology. ChemBioChem: A European Journal of Chemical Biology, 20(20), 2533-2534. doi:10.1002/cbic.201900507. [PubMan]