Researcher Portfolio
Waldmann, O.
Plasma Diagnostics Group (HUB), Max Planck Institute for Plasma Physics, Max Planck Society
Researcher Profile
Position: Plasma Diagnostics Group (HUB), Max Planck Institute for Plasma Physics, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons110729
Publications
(1 - 25 of 35)
: Akrami, H., Alon, N., Ray Chaudhury, B., Garg, J., Mehlhorn, K., & Mehta, R. (2024). EFX: A Simpler Approach and an (Almost) Optimal Guarantee via Rainbow Cycle Number. Operations Research, 1-14. doi:10.1287/opre.2023.0433. [PubMan] : Akrami, H., & Garg, J. (2024). Breaking the 3/4 Barrier for Approximate Maximin Share. In D. P. Woodruff (Ed. ), Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 74-91). Philadelphia, PA: SIAM. doi:10.1137/1.9781611977912. [PubMan] : Ray Chaudhury, B., Garg, J., & Mehlhorn, K. (2024). EFX Exists for Three Agents. Journal of the ACM, 71(1): 4, pp. 1-27. doi:10.1145/3616009. [PubMan] : Akrami, H., Garg, J., Sharma, E., & Taki, S. (in press). Improving Approximation Guarantees for Maximin Share. In EC '24. New York, NY: ACM. [PubMan] : Akrami, H., Ray Chaudhury, B., Garg, J., Mehlhorn, K., & Mehta, R. (2023). Fair and Efficient Allocation of Indivisible Chores with Surplus. In E. Elkind (Ed. ), Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (pp. 2494-2502). IJCAI. doi:10.24963/ijcai.2023/277. [PubMan] : Akrami, H., Garg, J., Sharma, E., & Taki, S. (2023). Simplification and Improvement of MMS Approximation. In E. Elkind (Ed. ), Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (pp. 2485-2493). IJCAI. doi:10.24963/ijcai.2023/276. [PubMan] : Garg, J., Hoefer, M., & Mehlhorn, K. (2023). Satiation in Fisher Markets and Approximation of Nash Social Welfare. Mathematics of Operations Research. doi:10.1287/moor.2019.0129. [PubMan] : Ray Chaudhury, B., Garg, J., Mehlhorn, K., Mehta, R., & Misra, P. (2023). Improving EFX Guarantees through Rainbow Cycle Number. Mathematics of Operations Research. doi:10.1287/moor.2021.0252. [PubMan] : Akrami, H., Alon, N., Ray Chaudhury, B., Garg, J., Mehlhorn, K., & Mehta, R. (2023). EFX: A Simpler Approach and an (Almost) Optimal Guarantee via Rainbow Cycle Number. In EC 2023 (pp. 61-61). New York, NY: ACM. [PubMan] : Ray Chaudhury, B., Cheung, Y. K., Garg, J., Garg, N., Hoefer, M., & Mehlhorn, K. (2022). Fair Division of Indivisible Goods for a Class of Concave Valuations. Journal of Artificial Intelligence Research, 74, 111-142. doi:10.1613/jair.1.12911. [PubMan] : Akrami, H., Alon, N., Ray Chaudhury, B., Garg, J., Mehlhorn, K., & Mehta, R. (2022). EFX Allocations: Simplifications and Improvements. Retrieved from https://arxiv.org/abs/2205.07638. [PubMan] : Ray Chaudhury, B., Garg, J., McGlaughlin, P., & Mehta, R. (2021). Competitive Allocation of a Mixed Manna. In D. Marx (Ed. ), Proceedings of the Thirty-Second ACM-SIAM Symposium on Discrete Algorithms (pp. 1405-1424). Philadelphia, PA: SIAM. doi:10.1137/1.9781611976465.85. [PubMan] : Ray Chaudhury, B., Garg, J., Mehlhorn, K., Mehta, R., & Misra, P. (2021). Improving EFX Guarantees through Rainbow Cycle Number. Retrieved from https://arxiv.org/abs/2103.01628. [PubMan] : Chaudhury, B. R., Garg, J., Mehlhorn, K., Mehta, R., & Misra, P. (2021). Improving EFX Guarantees through Rainbow Cycle Number. In P. Biró, S. Chawla, F. Echenique, & E. Sodomka (Eds. ), EC '21 (pp. 310-311). New York, NY: ACM. doi:10.1145/3465456.3467605. [PubMan] : Ray Chaudhury, B., Garg, J., & Mehta, R. (2021). Fair and Efficient Allocations under Subadditive Valuations. In AAAI Technical Track on Game Theory and Economic Paradigms (pp. 5269-5276). Palo Alto, CA: AAAI. Retrieved from https://ojs.aaai.org/index.php/AAAI/article/view/16665. [PubMan] : Ray Chaudhury, B., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Competitive Allocation of a Mixed Manna. Retrieved from https://arxiv.org/abs/2008.02753. [PubMan] : Ray Chaudhury, B., Garg, J., & Mehlhorn, K. (2020). EFX exists for three agents. Retrieved from http://arxiv.org/abs/2002.05119. [PubMan] : Ray Chaudhury, B., Garg, J., & Mehta, R. (2020). Fair and Efficient Allocations under Subadditive Valuations. Retrieved from https://arxiv.org/abs/2005.06511. [PubMan] : Ray Chaudhury, B., Garg, J., & Mehlhorn, K. (2020). EFX Exists for Three Agents. In P. Biró, & J. Hartline (Eds. ), EC '20 (pp. 1-19). New York, NY: ACM. doi:10.1145/3391403.3399511. [PubMan] : Bei, X., Garg, J., Hoefer, M., & Mehlhorn, K. (2019). Earning and Utility Limits in Fisher Markets. ACM Transactions on Economics and Computation, 7(2): 10. doi:10.1145/3340234. [PubMan] : Ray Chaudhury, B., Cheung, Y. K., Garg, J., Garg, N., Hoefer, M., & Mehlhorn, K. (2018). On Fair Division for Indivisible Items. In S. Ganguly, & P. Pandya (Eds. ), 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (pp. 1-17). Wadern: Schloss Dagstuhl. doi:10.4230/LIPIcs.FSTTCS.2018.25. [PubMan] : Ray Chaudhury, B., Cheung, Y. K., Garg, J., Garg, N., Hoefer, M., & Mehlhorn, K. (2018). On Fair Division of Indivisible Items. Retrieved from http://arxiv.org/abs/1805.06232. [PubMan] : Garg, J., Hoefer, M., & Mehlhorn, K. (2018). Approximating the Nash Social Welfare with Budget-Additive Valuations. In A. Czumaj (Ed. ), Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 2326-2340). Philadelphia, PA: SIAM. doi:10.1137/1.9781611975031.150. [PubMan] : Garg, J., Hoefer, M., & Mehlhorn, K. (2017). Approximating the Nash Social Welfare with Budget-Additive Valuations. Retrieved from http://arxiv.org/abs/1707.04428. [PubMan] : Bei, X., Garg, J., Hoefer, M., & Mehlhorn, K. (2017). Earning Limits in Fisher Markets with Spending-Constraint Utilities. In Algorithmic Game Theory (pp. 67-79). Berlin: Springer. doi:10.1007/978-3-319-66700-3_6. [PubMan]