Researcher Portfolio

 
   

Dr. Heyde, Markus

Chemical Physics, Fritz Haber Institute, Max Planck Society, Interface Science, Fritz Haber Institute, Max Planck Society  

 

Researcher Profile

 
Position: Chemical Physics, Fritz Haber Institute, Max Planck Society
Position: Interface Science, Fritz Haber Institute, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons21628

External references

 

Publications

 
  (1 - 25 of 143)
 : Landwehr, F., Das, M., Tosoni, S., Navarro, J. J., Das, A., Koy, M., Heyde, M., Pacchioni, G., Glorius, F., & Roldan Cuenya, B. (2024). N-Heterocyclic Olefins on a Metallic Surface – Adsorption, Orientation and Electronic Influence. Advanced Materials Interfaces, 11(31): 2400378. doi:10.1002/admi.202400378. [PubMan] : Tømterud, M., Eder, S. D., Büchner, C., Heyde, M., Freund, H.-J., Simonsen, I., Manson, J. R., & Holst, B. (submitted). Observation of the Boson Peak in a 2D Material. [PubMan] : Nguyen, K.-L.-C., Bruce, J. P., Yoon, A., Navarro, J. J., Scholten, F., Landwehr, F., Rettenmaier, C., Heyde, M., & Roldan Cuenya, B. (2024). The Influence of Mesoscopic Surface Structure on the Electrocatalytic Selectivity of CO2 Reduction with UHV-Prepared Cu(111) Single Crystals. ACS Energy Letters, 9(2), 644-652. doi:10.1021/acsenergylett.3c02693. [PubMan] : Gura, L., Brinker, M., Marschalik, P., Kalass, F., Junkes, B., Junkes, H., Heyde, M., & Freund, H.-J. (2023). The real honeycomb structure-From the macroscopic down to the atomic scale. Journal of Applied Physics, 133(21): 215305. doi:10.1063/5.0148421. [PubMan] : Gura, L., Yang, Z., Junkes, H., Heyde, M., & Freund, H.-J. (2023). Going fast with STM imaging. In K. Wandelt, & G. Bussetti (Eds.), Encyclopedia of Solid-Liquid Interfaces (pp. 612-626). Amsterdam: Elsevier. doi:10.1016/B978-0-323-85669-0.00069-6. [PubMan] : Soares, E. A., Paier, J., Gura, L., Burson, K., Ryczek, C., Yang, Z., Stavale, F., Heyde, M., & Freund, H.-J. (2022). Structure and registry of the silica bilayer film on Ru(0001) as viewed by LEED and DFT. Physical Chemistry Chemical Physics, 24(48), 29721-29730. doi:10.1039/D2CP04624E. [PubMan] : Navarro, J. J., Das, M., Tosoni, S., Landwehr, F., Heyde, M., Pacchioni, G., Glorius, F., & Roldan Cuenya, B. (2022). Promoted Thermal Reduction of Copper Oxide Surfaces by N-Heterocyclic Carbenes. The Journal of Physical Chemistry C, 126(41), 17528-17535. doi:10.1021/acs.jpcc.2c04257. [PubMan] : Navarro, J. J., Das, M., Tosoni, S., Landwehr, F., Bruce, J. P., Heyde, M., Pacchioni, G., Glorius, F., & Roldan Cuenya, B. (2022). Covalent Adsorption of N-Heterocyclic Carbenes on a Copper Oxide Surface. Journal of the American Chemical Society, 144(36), 16267-16271. doi:10.1021/jacs.2c06335. [PubMan] : Tømterud, M., Eder, S. D., Büchner, C., Heyde, M., Freund, H.-J., Manson, J. R., & Holst, B. (2022). Variation of bending rigidity with material density: bilayer silica with nanoscale holes. Physical Chemistry Chemical Physics, 24(30), 17941-17945. doi:10.1039/d2cp01960d. [PubMan] : Navarro, J. J., Das, M., Tosoni, S., Landwehr, F., Koy, M., Heyde, M., Pacchioni, G., Glorius, F., & Roldan Cuenya, B. (2022). Growth of N-Heterocyclic Carbene Assemblies on Cu(100) and Cu(111): from Single Molecules to Magic-Number Islands. Angewandte Chemie International Edition, 61(30): e202202127. doi:10.1002/anie.202202127. [PubMan] : Navarro, J. J., Das, M., Tosoni, S., Landwehr, F., Koy, M., Heyde, M., Pacchioni, G., Glorius, F., & Roldan Cuenya, B. (2022). Growth of N-Heterocyclic Carbene Assemblies on Cu(100) and Cu(111): from Single Molecules to Magic-Number Islands. Angewandte Chemie, 134(30): e202202127. doi:10.1002/ange.202202127. [PubMan] : Gura, L., Yang, Z., Paier, J., Kalass, F., Brinker, M., Junkes, H., Heyde, M., & Freund, H.-J. (2022). Dynamics in the O(2 × 1) adlayer on Ru(0001): bridging timescales from milliseconds to minutes by scanning tunneling microscopy. Physical Chemistry Chemical Physics, 24(25), 15265-15270. doi:10.1039/d2cp02363f. [PubMan] : Yang, Z., Gura, L., Kalass, F., Marschalik, P., Brinker, M., Kirstädter, W., Hartmann, J., Thielsch, G., Junkes, H., Heyde, M., & Freund, H.-J. (2022). A high-speed variable-temperature ultrahigh vacuum scanning tunneling microscope with spiral scan capabilities. Review of Scientific Instruments, 93(5): 053704. doi:10.1063/5.0079868. [PubMan] : Burson, K. M., Yang, H. J., Wall, D. S., Marsh, T., Yang, Z., Kuhness, D., Brinker, M., Gura, L., Heyde, M., Schneider, W.-D., & Freund, H.-J. (2022). Mesoscopic Structures and Coexisting Phases in Silica Films. The Journal of Physical Chemistry C, 126(7), 3736-3742. doi:10.1021/acs.jpcc.1c10216. [PubMan] : Gura, L., Yang, Z., Paier, J., Kalass, F., Brinker, M., Heyde, M., & Freund, H.-J. (2022). Resolving atomic diffusion in Ru(0001)-O(2×2) with spiral high-speed scanning tunneling microscopy. Physical Review B, 105(3): 035411. doi:10.1103/PhysRevB.105.035411. [PubMan] : Gura, L., Yang, Z., Brinker, M., Kalass, F., Kirstädter, W., Marschalik, P., Junkes, H., Heyde, M., & Freund, H.-J. (2021). Spiral high-speed scanning tunneling microscopy: Tracking atomic diffusion on the millisecond timescale. Applied Physics Letters, 119(25): 251601. doi:10.1063/5.0071340. [PubMan] : Scholten, F., Nguyen, K.-L.-C., Bruce, J. P., Heyde, M., & Roldan Cuenya, B. (2021). Identifying structure-selectivity correlations in the electrochemical reduction of CO2: a comparison of well-ordered atomically-clean and chemically-etched Cu single crystal surfaces. Angewandte Chemie, 133(35), 19318-19324. doi:10.1002/ange.202103102. [PubMan] : Scholten, F., Nguyen, K.-L.-C., Bruce, J. P., Heyde, M., & Roldan Cuenya, B. (2021). Identifying structure-selectivity correlations in the electrochemical reduction of CO2: a comparison of well-ordered atomically-clean and chemically-etched Cu single crystal surfaces. Angewandte Chemie International Edition, 60(35), 19169-19175. doi:10.1002/anie.202103102. [PubMan] : Gura, L., Tosoni, S., Lewandowski, A., Marschalik, P., Yang, Z., Schneider, W.-D., Heyde, M., Pacchioni, G., & Freund, H.-J. (2021). Continuous network structure of two-dimensional silica across a supporting metal step edge: An atomic scale study. Physical Review Materials, 5(7): L071001. doi:10.1103/PhysRevMaterials.5.L071001. [PubMan] : Bruce, J. P., Nguyen, K.-L.-C., Scholten, F., Aran Ais, R., Navarro, J. J., Hartmann, J., Heyde, M., & Roldan Cuenya, B. (2021). Development of a single crystal sample holder for interfacing ultrahigh vacuum and electrochemical experimentation. Review of Scientific Instruments, 92(7): 074104. doi:10.1063/5.0057822. [PubMan] : Lewandowski, A., Tosoni, S., Gura, L., Yang, Z., Fuhrich, A., Prieto, M., Schmidt, T., Usvyat, D., Schneider, W.-D., Heyde, M., Pacchioni, G., & Freund, H.-J. (2021). Growth and Atomic‐Scale Characterization of Ultrathin Silica and Germania Films: The Crucial Role of the Metal Support. Chemistry – A European Journal, 27(6), 1870-1885. doi:10.1002/chem.202001806. [PubMan] : Kuhness, D., Pal, J., Yang, H. J., Mammen, N., Honkala, K., Häkkinen, H., Schneider, W.-D., Heyde, M., & Freund, H.-J. (2020). Binding Behavior of Carbonmonoxide to Gold Atoms on Ag(001). Topics in Catalysis, 63(15-18), 1578-1584. doi:/10.1007/s11244-020-01290-3. [PubMan] : Navarro, J. J., Tosoni, S., Bruce, J. P., Chaves, L., Heyde, M., Pacchioni, G., & Roldan Cuenya, B. (2020). The Structure of a Silica Thin Film on Oxidized Cu(111): Conservation of Honeycomb Lattice and Role of the Interlayer. The Journal of Physical Chemistry C, 124(38), 20942-20949. doi:10.1021/acs.jpcc.0c05463. [PubMan] : Klemm, H., Prieto, M., Xiong, F., Hassine, G. B., Heyde, M., Menzel, D., Sierka, M., Schmidt, T., & Freund, H.-J. (2020). A Silica Bilayer Supported on Ru(0001): Following the Crystalline-to Vitreous Transformation in Real Time with Spectro‐Microscopy. Angewandte Chemie, 132(26), 10674-10680. doi:10.1002/ange.202002514. [PubMan] : Klemm, H., Prieto, M., Xiong, F., Hassine, G. B., Heyde, M., Menzel, D., Sierka, M., Schmidt, T., & Freund, H.-J. (2020). A Silica Bilayer Supported on Ru(0001): Following the Crystalline-to Vitreous Transformation in Real Time with Spectro‐microscopy. Angewandte Chemie International Edition, 59(26), 10587-10593. doi:10.1002/anie.202002514. [PubMan]