Researcher Portfolio

 
   

Sivalingam, Kantharuban

Lehrstuhl für Theoretische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany, Research Department Neese, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society, Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society, Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society, Research Group Wennmohs, Max-Planck-Institut für Kohlenforschung, Max Planck Society  

 

Researcher Profile

 
Position: Research Group Wennmohs, Max-Planck-Institut für Kohlenforschung, Max Planck Society
Position: Research Department Neese, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society
Position: Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society
Position: Lehrstuhl für Theoretische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany
Position: Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons216835

Publications

 
 
 : Kempfer, E. M., Sivalingam, K., & Neese, F. (2025). Efficient Implementation of Approximate Fourth Order N-Electron Valence State Perturbation Theory. Journal of Chemical Theory and Computation, 21(8), 3953-3967. doi:10.1021/acs.jctc.4c01735. [PubMan] : Guo, Y., Sivalingam, K., Chilkuri, V. G., & Neese, F. (2025). Approximations of density matrices in N-electron valence state second-order perturbation theory (NEVPT2). III. Large active space calculations with selected configuration interaction reference. The Journal of Chemical Physics, 162(14): 144110. doi:10.1063/5.0262473. [PubMan] : Rao, S. V., Manganas, D., Sivalingam, K., Atanasov, M., & Neese, F. (2024). Extended Active Space Ab Initio Ligand Field Theory: Applications to Transition-Metal Ions. Inorganic Chemistry, 63(52), 24672-24684. doi:10.1021/acs.inorgchem.4c03893. [PubMan] : Lechner, M. H., Papadopoulos, A., Sivalingam, K., Auer, A. A., Koslowski, A., Becker, U., Wennmohs, F., & Neese, F. (2024). Code generation in ORCA: progress, efficiency and tight integration. Physical Chemistry Chemical Physics, 26(21), 15205-15220. doi:10.1039/D4CP00444B. [PubMan] : Guo, Y., Pavošević, F., Sivalingam, K., Becker, U., Valeev, E. F., & Neese, F. (2023). SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. VI. Linear-scaling explicitly correlated N-electron valence state perturbation theory with pair natural orbital. The Journal of Chemical Physics, 158(12): 124120. doi:10.1063/5.0144260. [PubMan] : Kollmar, C., Sivalingam, K., Guo, Y., & Neese, F. (2021). An efficient implementation of the NEVPT2 and CASPT2 methods avoiding higher-order density matrices. The Journal of Chemical Physics, 155(23): 234104. doi:10.1063/5.0072129. [PubMan] : Guo, Y., Sivalingam, K., & Neese, F. (2021). Approximations of density matrices in N-electron valence state second-order perturbation theory (NEVPT2). I. Revisiting the NEVPT2 construction. The Journal of Chemical Physics, 154(21): 214111. doi:10.1063/5.0051211. [PubMan] : Guo, Y., Sivalingam, K., Kollmar, C., & Neese, F. (2021). Approximations of density matrices in N-electron valence state second-order perturbation theory (NEVPT2). II. The full rank NEVPT2 (FR-NEVPT2) formulation. The Journal of Chemical Physics, 154(21): 214113. doi:10.1063/5.0051218. [PubMan] : Kollmar, C., Sivalingam, K., & Neese, F. (2020). An alternative choice of the zeroth-order Hamiltonian in CASPT2 theory. The Journal of Chemical Physics, 152(21): 214110. doi:10.1063/5.0010019. [PubMan] : Lang, L., Sivalingam, K., & Neese, F. (2020). The combination of multipartitioning of the Hamiltonian with canonical Van Vleck perturbation theory leads to a Hermitian variant of quasidegenerate N-electron valence perturbation theory. The Journal of Chemical Physics, 152(1): 014109. doi:10.1063/1.5133746. [PubMan] : Kollmar, C., Sivalingam, K., Helmich-Paris, B., Angeli, C., & Neese, F. (2019). A perturbation-based super-CI approach for the orbital optimization of a CASSCF wave function. Journal of Computational Chemistry, 40(14), 1463-1470. doi:10.1002/jcc.25801. [PubMan] : Guo, Y., Sivalingam, K., Valeev, E. F., & Neese, F. (2017). Explicitly correlated N-electron valence state perturbation theory (NEVPT2-F12). The Journal of Chemical Physics, 147(6): 064110. doi:10.1063/1.4996560. [PubMan] : Krupička, M., Sivalingam, K., Huntington, L., Auer, A. A., & Neese, F. (2017). A toolchain for the automatic generation of computer codes for correlated wavefunction calculations. Journal of Computational Chemistry, 38(21), 1853-1868. doi:10.1002/jcc.24833. [PubMan] : Krupicka, M., Sivalingam, K., Huntington, L., Auer, A. A., & Neese, F. (2017). A toolchain for the automatic generation of computer codes for correlated wavefunction calculations. Journal of Computational Chemistry, 38(21), 1853-1868. doi:10.1002/jcc.24833. [PubMan] : Sivalingam, K., Krupicka, M., Auer, A. A., & Neese, F. (2016). Comparison of fully internally and strongly contracted multireference configuration interaction procedures. The Journal of Chemical Physics, 145(5): 054104. doi:10.1063/1.4959029. [PubMan] : Guo, Y., Sivalingam, K., Valeev, E. F., & Neese, F. (2016). SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory. The Journal of Chemical Physics, 144(9): 094111. doi:10.1063/1.4942769. [PubMan] : Sharma, S., Sivalingam, K., Neese, F., & Chan, G.-K.-L. (2014). Low-energy spectrum of iron–sulfur clusters directly from many-particle quantum mechanics. Nature Chemistry, 6(10), 927-933. doi:10.1038/nchem.2041. [PubMan] : Schapiro, I., Sivalingam, K., & Neese, F. (2013). Assessment of n-Electron Valence State Perturbation Theory for Vertical Excitation Energies. Journal of Chemical Theory and Computation, 9(8), 3567-3580. doi:10.1021/ct400136y. [PubMan] : Domingo, A., Àngels Carvajal, M., de Graaf, C., Sivalingam, K., Neese, F., & Angeli, C. (2012). Metal-to-metal charge-transfer transitions: reliable excitation energies from ab initio calculations. Theoretical Chemistry Accounts, 131(9): 1264. doi:10.1007/s00214-012-1264-1. [PubMan] : Atanasov, M., Ganyushin, D., Sivalingam, K., & Neese, F. (2012). A Modern First-Principles View on Ligand Field Theory Through the Eyes of Correlated Multireference Wavefunctions. In D. M. P. Mingos, & P. Day (Eds.), Structure and Bonding: Molecular Electronic Structures of Transition Metal Complexes II (pp. 149-220). Berlin, Heidelberg: Springer. [PubMan] : Atanasov, M., Ganyushin, D., Pantazis, D. A., Sivalingam, K., & Neese, F. (2011). Detailed Ab Initio First-Principles Study of the Magnetic Anisotropy in a Family of Trigonal Pyramidal Iron(II) Pyrrolide Complexes. Inorganic Chemistry, 50(16), 7460-7477. doi:10.1021/ic200196k. [PubMan] : Duboc, C., Ganyushin, D., Sivalingam, K., Collomb, M.-N., & Neese, F. (2010). Systematic Theoretical Study of the Zero-Field Splitting in Coordination Complexes of Mn(III). Density Functional Theory versus Multireference Wave Function Approaches. The Journal of Physical Chemistry A, 114(39), 10750-10758. doi:10.1021/jp107823s. [PubMan]