Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. VI. Linear-scaling explicitly correlated N-electron valence state perturbation theory with pair natural orbital

MPG-Autoren
/persons/resource/persons216835

Sivalingam,  Kantharuban
Research Group Wennmohs, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons216802

Becker,  Ute
Research Group Wennmohs, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons216825

Neese,  Frank
Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)

si-dlpno-nevpt2-f12-230228(4).docx
(Ergänzendes Material), 889KB

Zitation

Guo, Y., Pavošević, F., Sivalingam, K., Becker, U., Valeev, E. F., & Neese, F. (2023). SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. VI. Linear-scaling explicitly correlated N-electron valence state perturbation theory with pair natural orbital. The Journal of Chemical Physics, 158(12): 124120. doi:10.1063/5.0144260.


Zitierlink: https://hdl.handle.net/21.11116/0000-000D-1EA4-9
Zusammenfassung
In this work, a linear scaling explicitly correlated N-electron valence state perturbation theory (NEVPT2-F12) is presented. By using the idea of a domain-based local pair natural orbital (DLPNO), computational scaling of the conventional NEVPT2-F12 is reduced to near-linear scaling. For low-lying excited states of organic molecules, the excitation energies predicted by DLPNO-NEVPT2-F12 are as accurate as the exact NEVPT2-F12 results. Some cluster models of rhodopsin are studied using the new algorithm. Our new method is able to study systems with more than 3300 basis functions and an active space containing 12 π-electrons and 12 π-orbitals. However, even larger calculations or active spaces would still be feasible.