Researcher Portfolio

 
   

Kurzchalia, Teymuras V.

Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society  

 

Researcher Profile

 
Position: Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons219360

Publications

 
  (1 - 25 of 56)
 : Schmeisser, K., Kaptan, D., Raghuraman, B. K., Shevchenko, A., Rodenfels, J., Penkov, S., & Kurzchalia, T. V. (2024). Mobilization of cholesterol induces the transition from quiescence to growth in Caenorhabditis elegans through steroid hormone and mTOR signaling. Communications biology, 7(1): 121. doi:10.1038/s42003-024-05804-7. [PubMan] : Zhang, X., Penkov, S., Kurzchalia, T. V., & Zaburdaev, V. (2023). Periodic ethanol supply as a path toward unlimited lifespan of Caenorhabditis elegans dauer larvae. Frontiers in aging, 4: 1031161. doi:10.3389/fragi.2023.1031161. [PubMan] : Shatilovich, A., Gade, V., Pippel, M., Hoffmeyer, T. T., Tchesunov, A. V., Stevens, L., Winkler, S., Hughes, G. M., Traikov, S., Hiller, M., Rivkina, E., Schiffer, P. H., Myers, E. W., & Kurzchalia, T. V. (2023). A novel nematode species from the Siberian permafrost shares adaptive mechanisms for cryptobiotic survival with C. elegans dauer larva. PLoS genetics, 19(7): e1010798. doi:10.1371/journal.pgen.1010798. [PubMan] : Kim, K., Gade, V., Kurzchalia, T. V., & Guck, J. (2022). Quantitative imaging of Caenorhabditis elegans dauer larvae during cryptobiotic transition. Biophysical journal, 121(7), 1219-1229. doi:10.1016/j.bpj.2022.02.031. [PubMan] : Diez, V., Traikov, S., Schmeisser, K., Adhikari, A. K. D., & Kurzchalia, T. V. (2021). Glycolate combats massive oxidative stress by restoring redox potential in Caenorhabditis elegans. Communications biology, 4(1): 151. doi:10.1038/s42003-021-01669-2. [PubMan] : Kaptan, D., Penkov, S., Zhang, X., Gade, V., Raghuraman, B. K., Galli, R., Sampaio, J. L., Haase, R., Koch, E., Shevchenko, A., Zaburdaev, V., & Kurzchalia, T. V. (2020). Exogenous ethanol induces a metabolic switch that prolongs the survival of Caenorhabditis elegans dauer larva and enhances its resistance to desiccation. Aging cell, 19(10): e13214. doi:10.1111/acel.13214. [PubMan] : Gade, V., Traikov, S., Oertel, J., Fahmy, K., & Kurzchalia, T. V. (2020). C. elegans possess a general program to enter cryptobiosis that allows dauer larvae to survive different kinds of abiotic stress. Scientific reports, 10(1): 13466. doi:10.1038/s41598-020-70311-8. [PubMan] : Penkov, S., Raghuraman, B. K., Erkut, C., Oertel, J., Galli, R., Ackerman, E. J. M., Vorkel, D., Verbavatz, J.-M., Koch, E., Fahmy, K., Shevchenko, A., & Kurzchalia, T. V. (2020). A metabolic switch regulates the transition between growth and diapause in C. elegans. BMC biology, 18(1): 31. doi:10.1186/s12915-020-0760-3. [PubMan] : Namba, T., Dóczi, J., Pinson, A., Xing, L., Kalebic, N., Wilsch-Bräuninger, M., Long, K. S., Vaid, S., Lauer, J., Bogdanova, A., Borgonovo, B., Shevchenko, A., Keller, P., Drechsel, D. N., Kurzchalia, T. V., Wimberger, P., Chinopoulos, C., & Huttner, W. (2020). Human-Specific ARHGAP11B Acts in Mitochondria to Expand Neocortical Progenitors by Glutaminolysis. Neuron, 105(5), 867-881. doi:10.1016/j.neuron.2019.11.027. [PubMan] : Galles, C., Prez, G. M., Penkov, S., Boland, S., Porta, E. O. J., Altabe, S. G., Labadie, G. R., Schmidt, U., Knölker, H.-J., Kurzchalia, T. V., & Mendoza, D. (2018). Endocannabinoids in Caenorhabditis elegans are essential for the mobilization of cholesterol from internal reserves. Scientific reports, 8(1): 6398. doi:10.1038/s41598-018-24925-8. [PubMan] : Toyoda, Y., Cattin, C. J., Stewart, M. P., Poser, I., Theis, M., Kurzchalia, T. V., Buchholz, F., Hyman, A., & Müller, D. J. (2017). Genome-scale single-cell mechanical phenotyping reveals disease-related genes involved in mitotic rounding. Nature communications, 8(1): 1266. doi:10.1038/s41467-017-01147-6. [PubMan] : Boland, S., Schmidt, U., Zagoriy, V., Sampaio, J., Fritsche, R. F., Czerwonka, R., Lübken, T., Reimann, J., Penkov, S., Knölker, H.-J., & Kurzchalia, T. V. (2017). Phosphorylated glycosphingolipids essential for cholesterol mobilization in Caenorhabditis elegans. Nature chemical biology, 13(6), 647-654. doi:10.1038/nchembio.2347. [PubMan] : Mylenko, M., Boland, S., Penkov, S., Sampaio, J., Lombardot, B., Vorkel, D., Verbavatz, J.-M., & Kurzchalia, T. V. (2016). NAD+ Is a Food Component That Promotes Exit from Dauer Diapause in Caenorhabditis elegans. PLoS ONE, 11(12): e0167208. [PubMan] : Erkut, C., Gade, V., Laxman, S., & Kurzchalia, T. V. (2016). The glyoxylate shunt is essential for desiccation tolerance in C. elegans and budding yeast. eLife, 5: e13614. [PubMan] : Penkov, S., Kaptan, D., Erkut, C., Sarov, M., Mende, F., & Kurzchalia, T. V. (2015). Integration of carbohydrate metabolism and redox state controls dauer larva formation in Caenorhabditis elegans. Nature Communications, 6: 8060. [PubMan] : Erkut, C., & Kurzchalia, T. V. (2015). The C. elegans dauer larva as a paradigm to study metabolic suppression and desiccation tolerance. Planta, 242(2), 389-396. [PubMan] : Toyoda, Y., Erkut, C., Pan-Montojo, F., Boland, S., Stewart, M. P., Müller, D. J., Wurst, W., Hyman, A., & Kurzchalia, T. V. (2014). Products of the Parkinson's disease-related glyoxalase DJ-1, D-lactate and glycolate, support mitochondrial membrane potential and neuronal survival. Biology Open, 3(8), 777-784. [PubMan] : Penkov, S., Ogawa, A., Schmidt, U., Tate, D., Zagoriy, V., Boland, S., Gruner, M., Vorkel, D., Verbavatz, J.-M., Sommer, R. J., Knölker, H.-J., & Kurzchalia, T. V. (2014). A wax ester promotes collective host finding in the nematode Pristionchus pacificus. Nature Chemical Biology, 10(4), 281-285. [PubMan] : Abusharkh, S. E., Erkut, C., Oertel, J., Kurzchalia, T. V., & Fahmy, K. (2014). The Role of Phospholipid Headgroup Composition and Trehalose in the Desiccation Tolerance of Caenorhabditis elegans. Langmuir: the ACS Journal of Surfaces and Colloids, 30(43), 12897-12906. [PubMan] : Papan, C., Penkov, S., Herzog, R., Thiele, C., Kurzchalia, T. V., & Shevchenko, A. (2014). Systematic screening for novel lipids by shotgun lipidomics. Analytical Chemistry, 86(5), 2703-2710. [PubMan] : Erkut, C., Vasilj, A., Boland, S., Habermann, B., Shevchenko, A., & Kurzchalia, T. V. (2013). Molecular Strategies of the Caenorhabditis elegans Dauer Larva to Survive Extreme Desiccation. PLoS ONE, 8(12): e82473. [PubMan] : Schneider, K., Köcher, T., Andersin, T., Kurzchalia, T. V., Schibler, U., & Gatfield, D. (2012). CAVIN-3 regulates circadian period length and PER:CRY protein abundance and interactions. EMBO Reports, 13(12), 1138-1144. [PubMan] : Saini, R., Boland, S., Kataeva, O., Schmidt, A. W., Kurzchalia, T. V., & Knölker, H.-J. (2012). Stereoselective synthesis and hormonal activity of novel dafachronic acids and naturally occurring steroids isolated from corals. Organic & Biomolecular Chemistry, 10(21), 4159-4163. [PubMan] : Erkut, C., Penkov, S., Fahmy, K., & Kurzchalia, T. V. (2012). How worms survive desiccation: Trehalose pro water. Worm, 1(1), 61-65. [PubMan] : Erkut, C., Penkov, S., Khesbak, H., Vorkel, D., Verbavatz, J.-M., Fahmy, K., & Kurzchalia, T. V. (2011). Trehalose renders the dauer larva of Caenorhabditis elegans resistant to extreme desiccation. Current Biology: CB, 21(15), 1331-1336. [PubMan]