Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Genome-scale single-cell mechanical phenotyping reveals disease-related genes involved in mitotic rounding.

Toyoda, Y., Cattin, C. J., Stewart, M. P., Poser, I., Theis, M., Kurzchalia, T. V., et al. (2017). Genome-scale single-cell mechanical phenotyping reveals disease-related genes involved in mitotic rounding. Nature communications, 8(1): 1266. doi:10.1038/s41467-017-01147-6.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Toyoda, Yusuke1, Autor           
Cattin, Cedric J, Autor
Stewart, Martin P, Autor
Poser, Ina1, Autor           
Theis, Mirko1, Autor           
Kurzchalia, Teymuras V.1, Autor           
Buchholz, Frank1, Autor           
Hyman, Anthony1, Autor           
Müller, Daniel J. 1, Autor           
Affiliations:
1Max Planck Institute for Molecular Cell Biology and Genetics, ou_2340692              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: To divide, most animal cells drastically change shape and round up against extracellular confinement. Mitotic cells facilitate this process by generating intracellular pressure, which the contractile actomyosin cortex directs into shape. Here, we introduce a genome-scale microcantilever- and RNAi-based approach to phenotype the contribution of > 1000 genes to the rounding of single mitotic cells against confinement. Our screen analyzes the rounding force, pressure and volume of mitotic cells and localizes selected proteins. We identify 49 genes relevant for mitotic rounding, a large portion of which have not previously been linked to mitosis or cell mechanics. Among these, depleting the endoplasmic reticulum-localized protein FAM134A impairs mitotic progression by affecting metaphase plate alignment and pressure generation by delocalizing cortical myosin II. Furthermore, silencing the DJ-1 gene uncovers a link between mitochondria-associated Parkinson's disease and mitotic pressure. We conclude that mechanical phenotyping is a powerful approach to study the mechanisms governing cell shape.

Details

ausblenden:
Sprache(n):
 Datum: 2017-11-02
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1038/s41467-017-01147-6
Anderer: cbg-6976
PMID: 29097687
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Nature communications
  Andere : Nat Commun
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 8 (1) Artikelnummer: 1266 Start- / Endseite: - Identifikator: -