Researcher Portfolio

 
   

Dr. Rettenmaier, Clara

Interface Science, Fritz Haber Institute, Max Planck Society  

 

Researcher Profile

 
Position: Interface Science, Fritz Haber Institute, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons227610

External references

 

Publications

 
  (1 - 25 of 32)
 : Zhan, C., Dattila, F., Rettenmaier, C., Herzog, A., Herran, M., Wagner, T., Scholten, F., Bergmann, A., Lopez, N., & Roldan Cuenya, B. (2024). Key intermediates and Cu active sites for CO2 electroreduction to ethylene and ethanol. Nature Energy, 9(12), 1485-1496. doi:10.1038/s41560-024-01633-4. [PubMan] : Martini, A., Timoshenko, J., Grosse, P., Rettenmaier, C., Hursán, D., Deplano, G., Jeon, H., Bergmann, A., & Roldan Cuenya, B. (2024). Adsorbate Configurations in Ni Single-Atom Catalysts during CO2 Electrocatalytic Reduction Unveiled by Operando XAS, XES, and Machine Learning. Physical Review Letters, 133(22): 228001. doi:10.1103/PhysRevLett.133.228001. [PubMan] : Herzog, A., Rüscher, M., Jeon, H., Timoshenko, J., Rettenmaier, C., Hejral, U., Davis, E., Haase, F., Kordus, D., Kühl, S., Frandsen, W., Bergmann, A., & Roldan Cuenya, B. (2024). Time-resolved operando insights into the tunable selectivity of Cu–Zn nanocubes during pulsed CO2 electroreduction. Energy & Environmental Science, 17(19), 7081-7096. doi:10.1039/D4EE02308K. [PubMan] : Timoshenko, J., Rettenmaier, C., Hursán, D., Rüscher, M., Ortega, E., Herzog, A., Wagner, T., Bergmann, A., Hejral, U., Yoon, A., Martini, A., Liberra, E., Monteiro, M. C. O., & Roldan Cuenya, B. (2024). Reversible metal cluster formation on Nitrogen-doped carbon controlling electrocatalyst particle size with subnanometer accuracy. Nature Communications, 15: 6111. doi:10.1038/s41467-024-50379-w. [PubMan] : Herzog, A., Lopez-Luna, M., Jeon, H., Rettenmaier, C., Grosse, P., Bergmann, A., & Roldan Cuenya, B. (2024). Operando Raman spectroscopy uncovers hydroxide and CO species enhance ethanol selectivity during pulsed CO2 electroreduction. Nature Communications, 15: 3986. doi:10.1038/s41467-024-48052-3. [PubMan] : Bai, L., Franco, F., Timoshenko, J., Rettenmaier, C., Scholten, F., Jeon, H., Yoon, A., Rüscher, M., Herzog, A., Haase, F., Kühl, S., Chee, S. W., Bergmann, A., & Roldan Cuenya, B. (2024). Electrocatalytic Nitrate and Nitrite Reduction toward Ammonia using Cu2O Nanocubes: Active Species and Reaction Mechanisms. Journal of the American Chemical Society, 146(14), 9665-9678. doi:10.1021/jacs.3c13288. [PubMan] : Kordus, D., Widrinna, S., Timoshenko, J., Lopez-Luna, M., Rettenmaier, C., Chee, S. W., Ortega, E., Karslıoğlu, O., Kühl, S., & Roldan Cuenya, B. (2024). Enhanced Methanol Synthesis from CO2 Hydrogenation Achieved by Tuning the Cu-ZnO Interaction in ZnO/Cu2O Nanocube Catalysts Supported on ZrO2 and SiO2. Journal of the American Chemical Society, 146(12), 8677-8687. doi:10.1021/jacs.4c01077. [PubMan] : Nguyen, K.-L.-C., Bruce, J. P., Yoon, A., Navarro, J. J., Scholten, F., Landwehr, F., Rettenmaier, C., Heyde, M., & Roldan Cuenya, B. (2024). The Influence of Mesoscopic Surface Structure on the Electrocatalytic Selectivity of CO2 Reduction with UHV-Prepared Cu(111) Single Crystals. ACS Energy Letters, 9(2), 644-652. doi:10.1021/acsenergylett.3c02693. [PubMan] : Hursán, D., Timoshenko, J., Ortega, E., Jeon, H., Rüscher, M., Herzog, A., Rettenmaier, C., Chee, S. W., Martini, A., Koshy, D., & Roldan Cuenya, B. (2024). Reversible Structural Evolution of Metal-Nitrogen-Doped Carbon Catalysts During CO2 Electroreduction: An Operando X-ray Absorption Spectroscopy Study. Advanced Materials, 36(4): 2307809. doi:10.1002/adma.202307809. [PubMan] : Rettenmaier, C., Herzog, A., Casari, D., Rüscher, M., Jeon, H., Kordus, D., Lopez-Luna, M., Kühl, S., Hejral, U., Davis, E., Chee, S. W., Timoshenko, J., Alexander, D. T., Bergmann, A., & Roldan Cuenya, B. (2024). Operando insights into correlating CO coverage and Cu-Au alloying with the selectivity of Au NP-decorated Cu2O nanocubes during the electrocatalytic CO2 reduction. EES Catalysis, 2(1), 311-323. doi:10.1039/D3EY00162H. [PubMan] : Pellumbi, K., Krisch, D., Rettenmaier, C., Awada, H., Sun, H., Song, L., Sanden, S. A., Hoof, L., Messing, L., Puring, K. j., Siegmund, D., Roldan Cuenya, B., Schöfberger, W., & Apfel, U.-P. (2023). Pushing the Ag-loading of CO2 electrolyzers to the minimum via molecularly tuned environments. Cell Reports Physical Science, 4(12): 101746. doi:10.1016/j.xcrp.2023.101746. [PubMan] : Yang, F., Lopez-Luna, M., Haase, F., Escalera Lopez, D., Yoon, A., Rüscher, M., Rettenmaier, C., Jeon, H., Ortega, E., Timoshenko, J., Bergmann, A., Chee, S. W., & Roldan Cuenya, B. (2023). Spatially and Chemically Resolved Visualization of Fe Incorporation into NiO Octahedra during the Oxygen Evolution Reaction. Journal of the American Chemical Society, 145(39), 21465-21474. doi:10.1021/jacs.3c07158. [PubMan] : Martini, A., Hursán, D., Timoshenko, J., Rüscher, M., Haase, F., Rettenmaier, C., Ortega, E., Etxebarria, A., & Roldan Cuenya, B. (2023). Tracking the Evolution of Single-Atom Catalysts for the CO2 Electrocatalytic Reduction Using Operando X-ray Absorption Spectroscopy and Machine Learning. Journal of the American Chemical Society, 154(31), 17351-17366. doi:10.1021/jacs.3c04826. [PubMan] : Rettenmaier, C. (2023). In situ and Operando Electrocatalysis: Shape-dependent Nanocatalysts for the CO2 Reduction and the Formic Acid Oxidation. PhD Thesis, Technische Universität, Berlin. [PubMan] : Kordus, D., Jelic, J., Lopez-Luna, M., Divins, N. J., Timoshenko, J., Chee, S. W., Rettenmaier, C., Kröhnert, J., Kühl, S., Trunschke, A., Schlögl, R., Studt, F., & Roldan Cuenya, B. (2023). Shape-Dependent CO2 Hydrogenation to Methanol over Cu2O Nanocubes Supported on ZnO. Journal of the American Chemical Society, 145(5), 3016-3030. doi:10.1021/jacs.2c11540. [PubMan] : Haase, F., Bergmann, A., Jones, T., Timoshenko, J., Herzog, A., Jeon, H., Rettenmaier, C., & Roldan Cuenya, B. (2022). Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction. Nature Energy, 7(8), 765-773. doi:10.1038/s41560-022-01083-w. [PubMan] : Timoshenko, J., Bergmann, A., Rettenmaier, C., Herzog, A., Aran Ais, R., Jeon, H., Haase, F., Hejral, U., Grosse, P., Kühl, S., Davis, E., Tian, J., Magnussen, O., & Roldan Cuenya, B. (2022). Steering the structure and selectivity of CO2 electroreduction catalysts by potential pulses. Nature Catalysis, 5(4), 259-267. doi:10.1038/s41929-022-00760-z. [PubMan] : Li, C., Ju, W., Vijay, S., Timoshenko, J., Mou, K., Cullen, D. A., Yang, J., Wang, X., Pachfule, P., Brückner, S., Jeon, H., Haase, F., Tsang, S.-C., Rettenmaier, C., Chan, K., Roldan Cuenya, B., Thomas, A., & Strasser, P. (2022). Covalent Organic Framework (COF) derived Ni-N-C Catalysts for Electrochemical CO2 Reduction: Unraveling Fundamental Kinetic and Structural Parameters of the Active Sites. Angewandte Chemie, 134(15): e202114707. doi:10.1002/ange.202114707. [PubMan] : Li, C., Ju, W., Vijay, S., Timoshenko, J., Mou, K., Cullen, D. A., Yang, J., Wang, X., Pachfule, P., Brückner, S., Jeon, H., Haase, F., Tsang, S.-C., Rettenmaier, C., Chan, K., Roldan Cuenya, B., Thomas, A., & Strasser, P. (2022). Covalent Organic Framework (COF) derived Ni-N-C Catalysts for Electrochemical CO2 Reduction: Unraveling Fundamental Kinetic and Structural Parameters of the Active Sites. Angewandte Chemie International Edition, 61(15): e202114707. doi:10.1002/anie.202114707. [PubMan] : Daems, N., Choukroun, D., Merino, P., Rettenmaier, C., Pacquets, L., Bergmann, A., Santoro, G., Vázquez, L., Martínez, L., Roldan Cuenya, B., Martín Gago, J. A., & Breugelmans, T. (2022). Steering Hydrocarbon Selectivity in CO2 Electroreduction over Soft-Landed CuOx Nanoparticle-Functionalized Gas Diffusion Electrodes. ACS Applied Materials and Interfaces, 14(2), 2691-2702. doi:10.1021/acsami.1c17998. [PubMan] : Grosse, P., Yoon, A., Rettenmaier, C., Herzog, A., Chee, S. W., & Roldan Cuenya, B. (2021). Author Correction: Dynamic transformations of cubic copper catalysts during CO2 electroreduction and its impact on catalytic selectivity. Nature Communications, 12: 7329. doi:10.1038/s41467-021-27500-4. [PubMan] : Saddeler, S., Bendt, G., Salamon, S., Haase, F., Landers, J., Timoshenko, J., Rettenmaier, C., Jeon, H., Bergmann, A., Wende, H., Roldan Cuenya, B., & Schulz, S. (2021). Influence of the cobalt content in cobalt iron oxides on the electrocatalytic OER activity. Journal of Materials Chemistry A, 9(45), 25381-25390. doi:10.1039/D1TA06568H. [PubMan] : Zhan, C., Dattila, F., Rettenmaier, C., Bergmann, A., Kühl, S., García-Muelas, R., Lopez, N., & Roldan Cuenya, B. (2021). Revealing the CO Coverage Driven C-C Coupling Mechanism for Electrochemical CO2 Reduction on Cu2O Nanocubes via Operando Raman Spectroscopy. ACS Catalysis, 11(13), 7694-7701. doi:10.1021/acscatal.1c01478. [PubMan] : Jeon, H., Timoshenko, J., Rettenmaier, C., Herzog, A., Yoon, A., Chee, S. W., Oener, S., Hejral, U., Haase, F., & Roldan Cuenya, B. (2021). Selectivity control of Cu nanocrystals in a gas-fed flow cell through CO2 pulsed electroreduction. Journal of the American Chemical Society, 143(19), 7578-7587. doi:10.1021/jacs.1c03443. [PubMan] : Lopez-Luna, M., Timoshenko, J., Kordus, D., Rettenmaier, C., Chee, S. W., Hoffman, A. S., Bare, S. R., Shaikhutdinov, S. K., & Roldan Cuenya, B. (2021). Role of the Oxide Support on the Structural and Chemical Evolution of Fe Catalysts during the Hydrogenation of CO2. ACS Catalysis, 11(10), 6175-6185. doi:10.1021/acscatal.1c01549. [PubMan]