Researcher Portfolio
Rüscher, Martina
Interface Science, Fritz Haber Institute, Max Planck Society
Researcher Profile
Position: Interface Science, Fritz Haber Institute, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons267176
Publications
: Yoon, A., Bai, L., Yang, F., Franco, F., Zhan, C., Rüscher, M., Timoshenko, J., Pratsch, C., Werner, S., Jeon, H., Monteiro, M. C. O., Chee, S. W., & Roldan Cuenya, B. (2025). Revealing catalyst restructuring and composition during nitrate electroreduction through correlated operando microscopy and spectroscopy. Nature Materials. doi:10.1038/s41563-024-02084-8. [PubMan] : Tran, H. P., Nong, H. N., Zlatar, M., Yoon, A., Hejral, U., Rüscher, M., Timoshenko, J., Selve, S., Berger, D., Kroschel, M., Klingenhof, M., Paul, B., Möhle, S., Nasralla, K. N. N., Escalera Lopez, D., Bergmann, A., Cherevko, S., Roldan Cuenya, B., & Strasser, P. (2024). Reactivity and Stability of Reduced Ir-Weight TiO2-Supported Oxygen Evolution Catalysts for Proton Exchange Membrane (PEM) Water Electrolyzer Anodes. Journal of the American Chemical Society, 146(46), 31444-31455. doi:10.1021/jacs.4c07002. [PubMan] : Herzog, A., Rüscher, M., Jeon, H., Timoshenko, J., Rettenmaier, C., Hejral, U., Davis, E., Haase, F., Kordus, D., Kühl, S., Frandsen, W., Bergmann, A., & Roldan Cuenya, B. (2024). Time-resolved operando insights into the tunable selectivity of Cu–Zn nanocubes during pulsed CO2 electroreduction. Energy & Environmental Science, 17(19), 7081-7096. doi:10.1039/D4EE02308K. [PubMan] : Etxebarria, A., Lopez-Luna, M., Martini, A., Hejral, U., Rüscher, M., Zhan, C., Herzog, A., Jamshaid, A., Kordus, D., Bergmann, A., Kuhlenbeck, H., & Roldan Cuenya, B. (2024). Effect of Iron Doping in Ordered Nickel Oxide Thin Film Catalyst for the Oxygen Evolution Reaction. ACS Catalysis, 14(18), 14219-14232. doi:10.1021/acscatal.4c02572. [PubMan] : Murphy, E., Sun, B., Rüscher, M., Liu, Y., Zang, W., Guo, S., Chen, Y.-H., Hejral, U., Huang, Y., Ly, A., Zenyuk, I. V., Pan, X., Timoshenko, J., Roldan Cuenya, B., Spoerke, E. D., & Atanassov, P. (2024). Synergizing Fe2O3 nanoparticles on single atom Fe-N-C for nitrate reduction to ammonia at industrial current densities. Advanced Materials, 36(27): 2401133. doi:10.1002/adma.202401133. [PubMan] : Martini, A., Timoshenko, J., Rüscher, M., Hursán, D., Monteiro, M. C. O., Liberra, E., & Roldan Cuenya, B. (2024). Revealing the structure of the active sites for the electrocatalytic CO2 reduction to Co over Co single atom catalysts using operando XANES and machine learning. Journal of Synchrotron Radiation, 31(4), 741-750. doi:10.1107/S1600577524004739. [PubMan] : Timoshenko, J., Rettenmaier, C., Hursán, D., Rüscher, M., Ortega, E., Herzog, A., Wagner, T., Bergmann, A., Hejral, U., Yoon, A., Martini, A., Liberra, E., Monteiro, M. C. O., & Roldan Cuenya, B. (2024). Reversible metal cluster formation on Nitrogen-doped carbon controlling electrocatalyst particle size with subnanometer accuracy. Nature Communications, 15: 6111. doi:10.1038/s41467-024-50379-w. [PubMan] : Bai, L., Franco, F., Timoshenko, J., Rettenmaier, C., Scholten, F., Jeon, H., Yoon, A., Rüscher, M., Herzog, A., Haase, F., Kühl, S., Chee, S. W., Bergmann, A., & Roldan Cuenya, B. (2024). Electrocatalytic Nitrate and Nitrite Reduction toward Ammonia using Cu2O Nanocubes: Active Species and Reaction Mechanisms. Journal of the American Chemical Society, 146(14), 9665-9678. doi:10.1021/jacs.3c13288. [PubMan] : Haase, F., Ortega, E., Saddeler, S., Schmidt, F., Cruz, D., Scholten, F., Rüscher, M., Martini, A., Jeon, H., Herzog, A., Hejral, U., Davis, E., Timoshenko, J., Knop-Gericke, A., Lunkenbein, T., Schulz, S., Bergmann, A., & Roldan Cuenya, B. (2024). Role of Fe Decoration on the Oxygen Evolving State of Co3O4 Nanocatalysts. Energy & Environmental Science, 17(5), 2046-2058. doi:10.1039/D3EE02809G. [PubMan] : Hursán, D., Timoshenko, J., Ortega, E., Jeon, H., Rüscher, M., Herzog, A., Rettenmaier, C., Chee, S. W., Martini, A., Koshy, D., & Roldan Cuenya, B. (2024). Reversible Structural Evolution of Metal-Nitrogen-Doped Carbon Catalysts During CO2 Electroreduction: An Operando X-ray Absorption Spectroscopy Study. Advanced Materials, 36(4): 2307809. doi:10.1002/adma.202307809. [PubMan] : Rettenmaier, C., Herzog, A., Casari, D., Rüscher, M., Jeon, H., Kordus, D., Lopez-Luna, M., Kühl, S., Hejral, U., Davis, E., Chee, S. W., Timoshenko, J., Alexander, D. T., Bergmann, A., & Roldan Cuenya, B. (2024). Operando insights into correlating CO coverage and Cu-Au alloying with the selectivity of Au NP-decorated Cu2O nanocubes during the electrocatalytic CO2 reduction. EES Catalysis, 2(1), 311-323. doi:10.1039/D3EY00162H. [PubMan] : Yang, F., Lopez-Luna, M., Haase, F., Escalera Lopez, D., Yoon, A., Rüscher, M., Rettenmaier, C., Jeon, H., Ortega, E., Timoshenko, J., Bergmann, A., Chee, S. W., & Roldan Cuenya, B. (2023). Spatially and Chemically Resolved Visualization of Fe Incorporation into NiO Octahedra during the Oxygen Evolution Reaction. Journal of the American Chemical Society, 145(39), 21465-21474. doi:10.1021/jacs.3c07158. [PubMan] : Martini, A., Hursán, D., Timoshenko, J., Rüscher, M., Haase, F., Rettenmaier, C., Ortega, E., Etxebarria, A., & Roldan Cuenya, B. (2023). Tracking the Evolution of Single-Atom Catalysts for the CO2 Electrocatalytic Reduction Using Operando X-ray Absorption Spectroscopy and Machine Learning. Journal of the American Chemical Society, 154(31), 17351-17366. doi:10.1021/jacs.3c04826. [PubMan] : Murphy, E., Liu, Y., Matanovic, I., Rüscher, M., Huang, Y., Ly, A., Guo, S., Zang, W., Yan, X., Martini, A., Timoshenko, J., Roldan Cuenya, B., Zenyuk, I. V., Pan, X., Spoerke, E. D., & Atanassov, P. (2023). Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites. Nature Communications, 14: 4554. doi:10.1038/s41467-023-40174-4. [PubMan] : Timoshenko, J., Haase, F., Saddeler, S., Rüscher, M., Jeon, H., Herzog, A., Hejral, U., Bergmann, A., Schulz, S., & Roldan Cuenya, B. (2023). Deciphering the Structural and Chemical Transformations of Oxide Catalysts during Oxygen Evolution Reaction Using Quick X-ray Absorption Spectroscopy and Machine Learning. Journal of the American Chemical Society, 145(7), 4065-4080. doi:10.1021/jacs.2c11824. [PubMan] : Liu, H., Timoshenko, J., Bai, L., Li, Q., Rüscher, M., Sun, C., Roldan Cuenya, B., & Luo, J. (2023). Low-Coordination Rhodium Catalysts for an Efficient Electrochemical Nitrate Reduction to Ammonia. ACS Catalysis, 13(2), 1513-1521. doi:10.1021/acscatal.2c03004. [PubMan] : Liu, H., Lang, X., Zhu, C., Timoshenko, J., Rüscher, M., Bai, L., Guijarro, N., Yin, H., Peng, Y., Li, J., Liu, Z., Wang, W., Roldan Cuenya, B., & Luo, J. (2022). Efficient Electrochemical Nitrate Reduction to Ammonia with Copper supported Rhodium Cluster and Single-Atom Catalysts. Angewandte Chemie International Edition, 61(23): e202202556. doi:10.1002/anie.202202556. [PubMan] : Liu, H., Lang, X., Zhu, C., Timoshenko, J., Rüscher, M., Bai, L., Guijarro, N., Yin, H., Peng, Y., Li, J., Liu, Z., Wang, W., Roldan Cuenya, B., & Luo, J. (2022). Efficient Electrochemical Nitrate Reduction to Ammonia with Copper supported Rhodium Cluster and Single-Atom Catalysts. Angewandte Chemie, 134(23): e202202556. doi:10.1002/ange.202202556. [PubMan] : Rüscher, M., Herzog, A., Timoshenko, J., Jeon, H., Frandsen, W., Kühl, S., & Roldan Cuenya, B. (2022). Tracking heterogeneous structural motifs and the redox behaviour of copper-zinc nanocatalysts for the electrocatalytic CO2 reduction using operando time resolved spectroscopy and machine learning. Catalysis Science & Technology, 12(9), 3028-3043. doi:10.1039/D2CY00227B. [PubMan] : Feng, X., Jena, H., Krishnaraj, C., Arenas-Esteban, D., Leus, K., Wang, G., Sun, J., Rüscher, M., Timoshenko, J., Roldan Cuenya, B., Bals, S., & Van Der Voort, P. (2021). Creation of Exclusive Artificial Cluster Defects by Selective Metal Removal in the (Zn, Zr) Mixed-metal UiO-66. Journal of the American Chemical Society, 143(51), 21511-21518. doi:10.1021/jacs.1c05357. [PubMan]