English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  EF-P is essential for rapid synthesis of proteins containing consecutive proline residues

Doerfel, L. K., Wohlgemuth, I., Kothe, C., Peske, F., Urlaub, H., & Rodnina, M. V. (2013). EF-P is essential for rapid synthesis of proteins containing consecutive proline residues. Science, 339(6115), 85-88. doi:10.1126/science.1229017.

Item is

Files

show Files
hide Files
:
1586546.pdf (Publisher version), 2MB
Name:
1586546.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
1586546_Doerfel.SM.pdf (Publisher version), 596KB
Name:
1586546_Doerfel.SM.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Doerfel, L. K.1, Author           
Wohlgemuth, I.1, Author           
Kothe, C.1, Author           
Peske, F.1, Author           
Urlaub, H.2, Author           
Rodnina, M. V.1, Author           
Affiliations:
1Department of Physical Biochemistry, MPI for biophysical chemistry, Max Planck Society, ou_578598              
2Research Group of Bioanalytical Mass Spectrometry, MPI for biophysical chemistry, Max Planck Society, ou_578613              

Content

show
hide
Free keywords: -
 Abstract: Elongation factor P (EF-P) is a translation factor of unknown function that has been implicated in a great variety of cellular processes. Here, we show that EF-P prevents ribosome from stalling during synthesis of proteins containing consecutive prolines, such as PPG, PPP, or longer proline strings, in natural and engineered model proteins. EF-P promotes peptide-bond formation and stabilizes the peptidyl–transfer RNA in the catalytic center of the ribosome. EF-P is posttranslationally modified by a hydroxylated b-lysine attached to a lysine residue. The modification enhances the catalytic proficiency of the factor mainly by increasing its affinity to the ribosome. We propose that EF-P and its eukaryotic homolog, eIF5A, are essential for the synthesis of a subset of proteins containing proline stretches in all cells.

Details

show
hide
Language(s): eng - English
 Dates: 2013-01-04
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1126/science.1229017
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Science
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 339 (6115) Sequence Number: - Start / End Page: 85 - 88 Identifier: -