hide
Free keywords:
General Relativity and Quantum Cosmology, gr-qc,Mathematics, Analysis of PDEs, math.AP,Mathematics, Differential Geometry, math.DG,
Abstract:
We investigate the initial value problem for the Einstein-Euler equations of
general relativity under the assumption of Gowdy symmetry on T3, and we
construct matter spacetimes with low regularity. These spacetimes admit, both,
impulsive gravitational waves in the metric (for instance, Dirac mass curvature
singularities propagating at light speed) and shock waves in the fluid (i.e.,
discontinuities propagating at about the sound speed). Given an initial data
set, we establish the existence of a future development and we provide a global
foliation in terms of a globally and geometrically defined time-function,
closely related to the area of the orbits of the symmetry group. The main
difficulty lies in the low regularity assumed on the initial data set which
requires a distributional formulation of the Einstein-Euler equations.