Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Missing Modules, the Gnome Lie Algebra, and E10.

Bärwald, O., Gebert, R. W., Günaydin, M., & Nicolai, H. (1998). Missing Modules, the Gnome Lie Algebra, and E10. Communications in Mathematical Physics, 195(1), 29-65. doi:10.1007/s002200050378.

Item is

Basisdaten

einblenden: ausblenden:
Datensatz-Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-5946-8 Versions-Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-5947-6
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
206273.pdf (Verlagsversion), 364KB
Name:
206273.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
eDoc_access: PUBLIC
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Bärwald, Oliver, Autor
Gebert, Reinhold W., Autor
Günaydin, Murat, Autor
Nicolai, Hermann1, Autor              
Affiliations:
1Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_24014              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: We study the embedding of Kac–Moody algebras into Borcherds (or generalized Kac–Moody) algebras which can be explicitly realized as Lie algebras of physical states of some completely compactified bosonic string. The extra “missing states” can be decomposed into irreducible highest or lowest weight “missing modules” w.r.t. the relevant Kac–Moody subalgebra; the corresponding lowest weights are associated with imaginary simple roots whose multiplicities can be simply understood in terms of certain polarization states of the associated string.We analyse in detail two examples where the momentum lattice of the string is given by the unique even unimodular Lorentzian lattice II1;1 or II9;1, respectively. The former leads to the Borcherds algebra gII1;1 , which we call “gnome Lie algebra”, with maximal Kac–Moody subalgebra A1. By the use of the denominator formula a complete set of imaginary simple roots can be exhibited, while the DDF construction provides an explicit Lie algebra basis in terms of purely longitudinal states of the compactified string in two dimensions. The second example is the Borcherds algebra gII9;1 , whose maximal Kac–Moody subalgebra is the hyperbolic algebra E10. The imaginary simple roots at level 1, which give rise to irreducible lowest weight modules for E10, can be completely characterized; furthermore, our explicit analysis of two non-trivial level-2 root spaces leads us to conjecture that these are in fact the only imaginary simple roots for gII9;1.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 1998-07
 Publikationsstatus: Im Druck publiziert
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: eDoc: 206273
Anderer: 5188
DOI: 10.1007/s002200050378
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Communications in Mathematical Physics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 195 (1) Artikelnummer: - Start- / Endseite: 29 - 65 Identifikator: ISSN: 1432-0916