English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Phase transitions in De Sitter space

Allen, B. (1983). Phase transitions in De Sitter space. Nuclear Physics B, 226(1), 228-252. doi:10.1016/0550-3213(83)90470-4.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-5E40-E Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-5E41-C
Genre: Journal Article

Files

show Files
hide Files
:
427294.pdf (Publisher version), 2MB
Name:
427294.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Allen, Bruce1, Author              
Affiliations:
1Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society, ou_24011              

Content

show
hide
Free keywords: -
 Abstract: This paper uses zeta-function regularisation to calculate the one-loop functional determinants for fields of any spin in De Sitter space. As an example, we investigate the Coleman-Weinberg spontaneous symmetry breaking mechanism in massless scalar electrodynamics. The effective potential is calculated in Landau gauge. It depends upon the curvature, and upon the renormalised value of ζ (inζRφ2). The phase transition will be first or second order, and the critical curvature and mass are found. The methods can be applied to any gauge theory.

Details

show
hide
Language(s):
 Dates: 1983-09-26
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: eDoc: 427294
DOI: 10.1016/0550-3213(83)90470-4
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nuclear Physics B
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 226 (1) Sequence Number: - Start / End Page: 228 - 252 Identifier: ISSN: 0550-3213