Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  PAC-Bayesian Bounds for Discrete Density Estimation and Co-clustering Analysis

Seldin, Y., & Tishby, N. (2010). PAC-Bayesian Bounds for Discrete Density Estimation and Co-clustering Analysis. In Foundations and New Trends of PAC Bayesian Learning Workshop (pp. 1-2).

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Seldin_Tishby_PAC-Bayes_Workshop_6329[0].pdf (beliebiger Volltext), 280KB
Name:
Seldin_Tishby_PAC-Bayes_Workshop_6329[0].pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
http://videolectures.net/pacbayesian_seldin_pbau/ (Zusammenfassung)
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Seldin, Y1, 2, Autor           
Tishby, N, Autor
Affiliations:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: We applied PAC-Bayesian framework to derive gen-eralization bounds for co-clustering1. The analysis yielded regularization terms that were absent in the preceding formulations of this task. The bounds suggested that co-clustering should optimize a trade-off between its empirical performance and the mutual information that the cluster variables preserve on row and column indices. Proper regularization enabled us to achieve state-of-the-art results in prediction of the missing ratings in the MovieLens collaborative filtering dataset.
In addition a PAC-Bayesian bound for discrete density estimation was derived. We have shown that the PAC-Bayesian bound for classification is a special case of the PAC-Bayesian bound for discrete density estimation. We further introduced combinatorial priors to PAC-Bayesian analysis. The combinatorial priors are more appropriate for discrete domains, as opposed to Gaussian priors, the latter of which are suitable for continuous domains. It was shown that combinatorial priors lead to regularization terms in the form of mutual information.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2010-03
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: BibTex Citekey: 6329
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: Foundations and New Trends of PAC Bayesian Learning Workshop
Veranstaltungsort: London, UK
Start-/Enddatum: -

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Foundations and New Trends of PAC Bayesian Learning Workshop
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: 1 - 2 Identifikator: -