English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Machine Learning for Brain-Computer Interfaces

Hill, N. (2009). Machine Learning for Brain-Computer Interfaces. Talk presented at Mini-Symposia on Assistive Machine Learning for People with Disabilities at NIPS 2009 (AMD 2009). Vancouver, BC, Canada. 2009-12-10.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-C1B0-4 Version Permalink: http://hdl.handle.net/21.11116/0000-0003-1E00-C
Genre: Talk

Files

show Files
hide Files
:
Hill-NIPS2009-MLBCI_6220[0].pdf (Any fulltext), 6MB
Name:
Hill-NIPS2009-MLBCI_6220[0].pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Hill, NJ1, 2, Author              
Affiliations:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: Brain-computer interfaces (BCI) aim to be the ultimate in assistive technology: decoding a userlsquo;s intentions directly from brain signals without involving any muscles or peripheral nerves. Thus, some classes of BCI potentially offer hope for users with even the most extreme cases of paralysis, such as in late-stage Amyotrophic Lateral Sclerosis, where nothing else currently allows communication of any kind. Other lines in BCI research aim to restore lost motor function in as natural a way as possible, reconnecting and in some cases re-training motor-cortical areas to control prosthetic, or previously paretic, limbs. Research and development are progressing on both invasive and non-invasive fronts, although BCI has yet to make a breakthrough to widespread clinical application. The high-noise high-dimensional nature of brain-signals, particularly in non-invasive approaches and in patient populations, make robust decoding techniques a necessity. Generally, the approach has been to use relatively simple feature extraction techniques, such as template matching and band-power estimation, coupled to simple linear classifiers. This has led to a prevailing view among applied BCI researchers that (sophisticated) machine-learning is irrelevant since "it doesnlsquo;t matter what classifier you use once youlsquo;ve done your preprocessing right and extracted the right features." I shall show a few examples of how this runs counter to both the empirical reality and the spirit of what needs to be done to bring BCI into clinical application. Along the way Ilsquo;ll highlight some of the interesting problems that remain open for machine-learners.

Details

show
hide
Language(s):
 Dates: 2009-12
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: 6220
 Degree: -

Event

show
hide
Title: Mini-Symposia on Assistive Machine Learning for People with Disabilities at NIPS 2009 (AMD 2009)
Place of Event: Vancouver, BC, Canada
Start-/End Date: 2009-12-10
Invited: Yes

Legal Case

show

Project information

show

Source

show