Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Learning the Similarity Measure for Multi-Modal 3D Image Registration

Lee, D., Hofmann, M., Steinke, F., Altun, Y., Cahill, N., & Schölkopf, B. (2009). Learning the Similarity Measure for Multi-Modal 3D Image Registration. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (pp. 186-193). Piscataway, NJ, USA: IEEE Service Center.

Item is

Externe Referenzen

ausblenden:
Beschreibung:
-
OA-Status:

Urheber

ausblenden:
 Urheber:
Lee, D1, 2, Autor           
Hofmann, M1, 2, Autor           
Steinke, F1, 2, Autor           
Altun, Y1, 2, Autor           
Cahill, ND, Autor
Schölkopf, B1, 2, Autor           
Affiliations:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Multi-modal image registration is a challenging problem
in medical imaging. The goal is to align anatomically
identical structures; however, their appearance in images
acquired with different imaging devices, such as CT
or MR, may be very different. Registration algorithms generally
deform one image, the floating image, such that it
matches with a second, the reference image, by maximizing
some similarity score between the deformed and the reference
image. Instead of using a universal, but a priori fixed
similarity criterion such as mutual information, we propose
learning a similarity measure in a discriminative manner
such that the reference and correctly deformed floating
images receive high similarity scores. To this end, we
develop an algorithm derived from max-margin structured
output learning, and employ the learned similarity measure
within a standard rigid registration algorithm. Compared
to other approaches, our method adapts to the specific registration
problem at hand and exploits correlations between
neighboring pixels in the reference and the floating image.
Empirical evaluation on CT-MR/PET-MR rigid registration
tasks demonstrates that our approach yields robust performance
and outperforms the state of the art methods for
multi-modal medical image registration.

Details

ausblenden:
Sprache(n):
 Datum: 2009-06
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1109/CVPRW.2009.5206840
BibTex Citekey: 5777
 Art des Abschluß: -

Veranstaltung

ausblenden:
Titel: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009)
Veranstaltungsort: Miami, FL, USA
Start-/Enddatum: 2009-06-20 - 2009-06-25

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: 2009 IEEE Conference on Computer Vision and Pattern Recognition
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Piscataway, NJ, USA : IEEE Service Center
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: 186 - 193 Identifikator: ISBN: 978-1-4244-3991-1