日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Approximation Algorithms for Bregman Clustering Co-clustering and Tensor Clustering

Sra, S., Jegelka, S., & Banerjee, A.(2008). Approximation Algorithms for Bregman Clustering Co-clustering and Tensor Clustering (177). Tübingen, Germany: Max Planck Institute for Biological Cybernetics.

Item is

基本情報

表示: 非表示:
資料種別: 報告書

ファイル

表示: ファイル
非表示: ファイル
:
MPIK-TR-177.pdf (出版社版), 343KB
ファイルのパーマリンク:
https://hdl.handle.net/21.11116/0000-0002-8707-E
ファイル名:
MPIK-TR-177.pdf
説明:
-
OA-Status:
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Sra, S1, 2, 著者           
Jegelka, S1, 2, 著者           
Banerjee, A, 著者
所属:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              
2biological cy, ou_persistent22              

内容説明

表示:
非表示:
キーワード: -
 要旨: The Euclidean K-means problem is fundamental to clustering and over the years it has been
intensely investigated. More recently, generalizations such as Bregman k-means [8], co-clustering [10],
and tensor (multi-way) clustering [40] have also gained prominence. A well-known computational difficulty
encountered by these clustering problems is the NP-Hardness of the associated optimization task,
and commonly used methods guarantee at most local optimality. Consequently, approximation algorithms
of varying degrees of sophistication have been developed, though largely for the basic Euclidean
K-means (or `1-norm K-median) problem. In this paper we present approximation algorithms for several
Bregman clustering problems by building upon the recent paper of Arthur and Vassilvitskii [5]. Our algorithms
obtain objective values within a factor O(logK) for Bregman k-means, Bregman co-clustering,
Bregman tensor clustering, and weighted kernel k-means. To our knowledge, except for some special
cases, approximation algorithms have not been considered for these general clustering problems. There
are several important implications of our work: (i) under the same assumptions as Ackermann et al. [1]
it yields a much faster algorithm (non-exponential in K, unlike [1]) for information-theoretic clustering,
(ii) it answers several open problems posed by [4], including generalizations to Bregman co-clustering,
and tensor clustering, (iii) it provides practical and easy to implement methods—in contrast to several
other common approximation approaches.

資料詳細

表示:
非表示:
言語:
 日付: 2008-09
 出版の状態: 出版
 ページ: 21
 出版情報: Tübingen, Germany : Max Planck Institute for Biological Cybernetics
 目次: -
 査読: -
 識別子(DOI, ISBNなど): Reportnr.: 177
BibTex参照ID: 5557
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Technical Report of the Max Planck Institute for Biological Cybernetics
種別: 連載記事
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 177 通巻号: - 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): -