English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The role of binocular cues in scaling the retinal velocities of objects moving in space

Welchman, A., Maier, S., & Bülthoff, H. (2005). The role of binocular cues in scaling the retinal velocities of objects moving in space. Poster presented at Fifth Annual Meeting of the Vision Sciences Society (VSS 2005), Sarasota, FL, USA.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-D487-7 Version Permalink: http://hdl.handle.net/21.11116/0000-0005-3CB4-D
Genre: Poster

Files

show Files

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Welchman, A1, 2, Author              
Maier, S1, 2, Author              
Bülthoff, H1, 2, Author              
Affiliations:
1Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: The retinal velocity of an object moving in space depends on its distance from us. Thus, to interpret retinal motions the visual system must estimate an object's distance. Which sources of information are used? Here we consider the use of horizontal binocular disparity and vergence cues to distance. Specifically, we investigated whether disparity and vergence cues provide a depth distance estimate required to judge the physical velocity of objects moving at different distances (velocity constancy). Observers (n=6) viewed computer-rendered objects (either wire-frame spheres or small points) translating in the fronto-parallel plane. A trial consisted of two objects presented sequentially; observers judged whether the first or second moved faster. A staircase procedure was used to adjust the velocity of the second object to obtain the point of subjective equality between the two presented motions. Trials for objects moving with different velocities, directions and displacements were randomly interleaved. Velocity judgments were made for objects presented at different distances defined by disparity, vergence angle and changing size cues. Judgments of perceived velocity were systematically affected by the depth distance between the objects, with velocity matches close to those expected for perfect velocity constancy. This was true even for small points, suggesting that, in contrast a previous report (McKee Welch, Vision Research, 29, 553), disparity-defined depth can provide a sufficient distance cue for judgments of object velocity. However, settings made under conditions of different states of eye vergence had little effect on velocity matches. These results support a constancy mechanism for velocity that takes disparity-defined depth as an input, but that is little affected by static vergence posture.

Details

show
hide
Language(s):
 Dates: 2005-09
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1167/5.8.333
BibTex Citekey: 3348
 Degree: -

Event

show
hide
Title: Fifth Annual Meeting of the Vision Sciences Society (VSS 2005)
Place of Event: Sarasota, FL, USA
Start-/End Date: 2005-05-06 - 2005-05-11

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Vision
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Charlottesville, VA : Scholar One, Inc.
Pages: - Volume / Issue: 5 (8) Sequence Number: - Start / End Page: 333 Identifier: ISSN: 1534-7362
CoNE: https://pure.mpg.de/cone/journals/resource/111061245811050