English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Next-generation sequencing algorithms : from read mapping to variant detection

Emde, A.-K. (2013). Next-generation sequencing algorithms: from read mapping to variant detection. PhD Thesis, Berlin, Freie Universität.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0018-D093-A Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0019-CEDB-8
Genre: Thesis

Files

show Files
hide Files
:
thesis_Emde.pdf (Any fulltext), 3MB
Name:
thesis_Emde.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Emde, Anne-Katrin1, 2, Author              
Affiliations:
1Gene Structure and Array Design (Stefan Haas), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society, Ihnestr. 73, 14195 Berlin, Germany, ou_1479640              
2Freie Universität Berlin, Fachbereich Mathematik und Informatik, Berlin, Germany, ou_persistent22              

Content

show
hide
Free keywords: Bioinformatics; Algorithms; Sequence Analysis; Alignment; Variant Detection
 Abstract: Next-Generation-Sequencing (NGS) has brought on a revolution in sequence analysis with its broad spectrum of applications ranging from genome resequencing to transcriptomics or metage- nomics, and from fundamental research to diagnostics. The tremendous amounts of data necessi- tate highly ecient computational analysis tools for the wide variety of NGS applications. This thesis addresses a broad range of key computational aspects of resequencing applications, where a reference genome sequence is known and heavily used for interpretation of the newly sequenced sample. It presents tools for read mapping and benchmarking, for partial read mapping of small RNA reads and for structural variant/indel detection, and nally tools for detecting and genotyping SNVs and short indels. Our tools eciently scale to large NGS data sets and are well- suited for advances in sequencing technology, since their generic algorithm design allows handling of arbitrary read lengths and variable error rates. Furthermore, they are implemented within the robust C++ library SeqAn, making them open-source, easily available, and potentially adaptable for the bioinformatics community. Among other applications, our tools have been integrated into a large-scale analysis pipeline and have been applied to large datasets, leading to interesting discoveries of human retrocopy variants and insights into the genetic causes of X-linked intellectual disabilities.

Details

show
hide
Language(s): eng - English
 Dates: 2012-11-152013-04-17
 Publication Status: Accepted / In Press
 Pages: 148
 Publishing info: Freie Universität : Berlin
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: PhD

Event

show

Legal Case

show

Project information

show

Source

show