English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Atomic-scale quantification of grain boundary segregation in nanocrystalline material

Herbig, M., Raabe, D., Li, Y., Choi, P.-P., Zaefferer, S., & Goto, S. (2014). Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Physical Review Letters, 112: 126103. doi:10.1103/PhysRevLett.112.126103.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Herbig, Michael1, Author           
Raabe, D.2, Author           
Li, Yujiao3, Author           
Choi, Pyuck-Pa1, Author           
Zaefferer, Stefan4, Author           
Goto, Shoji2, 5, Author           
Affiliations:
1Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863384              
2Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              
3Alloy Design and Thermomechanical Processing, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863383              
4Microscopy and Diffraction, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863391              
5Akita University, Tegata Gakuencho, Akita 010-8502, Japan, ou_persistent22              

Content

show
hide
Free keywords: TRANSMISSION ELECTRON-MICROSCOPE; AIDED CRYSTALLOGRAPHIC ANALYSIS; INTERNAL INTERFACES; ORIENTATION; SIGMA-3; SOLUTE; SYSTEM; GLASS; IRON
 Abstract: Grain boundary segregation leads to nanoscale chemical variations that can alter a material's performance by orders of magnitude (e. g., embrittlement). To understand this phenomenon, a large number of grain boundaries must be characterized in terms of both their five crystallographic interface parameters and their atomic-scale chemical composition. We demonstrate how this can be achieved using an approach that combines the accuracy of structural characterization in transmission electron microscopy with the 3D chemical sensitivity of atom probe tomography. We find a linear trend between carbon segregation and the misorientation angle omega for low-angle grain boundaries in ferrite, which indicates that omega is the most influential crystallographic parameter in this regime. However, there are significant deviations from this linear trend indicating an additional strong influence of other crystallographic parameters (grain boundary plane, rotation axis). For high-angle grain boundaries, no general trend between carbon excess and omega is observed; i.e., the grain boundary plane and rotation axis have an even higher influence on the segregation behavior in this regime. Slight deviations from special grain boundary configurations are shown to lead to unexpectedly high levels of segregation.

Details

show
hide
Language(s): eng - English
 Dates: 2014-03-27
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 680498
DOI: 10.1103/PhysRevLett.112.126103
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review Letters
  Abbreviation : Phys. Rev. Lett.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Woodbury, N.Y. : American Physical Society
Pages: 5 Volume / Issue: 112 Sequence Number: 126103 Start / End Page: - Identifier: ISSN: 0031-9007
CoNE: https://pure.mpg.de/cone/journals/resource/954925433406_1