English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Fire emission heights in the climate system - Part 1: Global plume height patterns simulated by ECHAM6-HAM2

Veira, A., Kloster, S., Wilkenskjeld, S., & Remy, S. (2015). Fire emission heights in the climate system - Part 1: Global plume height patterns simulated by ECHAM6-HAM2. Atmospheric Chemistry and Physics, 15, 7155-7171. doi:10.5194/acp-15-7155-2015.

Item is

Files

show Files
hide Files
:
acp-15-7155-2015.pdf (Publisher version), 3MB
Name:
acp-15-7155-2015.pdf
Description:
Final Revised Paper
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Veira, Andreas1, 2, Author           
Kloster, Silvia1, Author           
Wilkenskjeld, Stiig1, Author           
Remy, Samuel, Author
Affiliations:
1Emmy Noether Junior Research Group Fire in the Earth System, The Land in the Earth System, MPI for Meteorology, Max Planck Society, ou_913563              
2IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society, Bundesstraße 53, 20146 Hamburg, DE, ou_913547              

Content

show
hide
Free keywords: -
 Abstract: We use the global circulation model ECHAM6 extended by the aerosol module HAM2 to simulate global patterns in wildfire emission heights. Prescribed plume heights in ECHAM6 are replaced by an implementation of a simple, semi-empirical plume height parametrization. In a first step, the global performance of the plume height parametrization is evaluated for plumes reported in the Multiangle Imaging Spectroradiometer (MISR) Plume Height Project (MPHP) data set. Our results show that the parametrization simulates a largely reasonable global distribution of plume heights. While the modeled global mean plume height (1411 ± 646 m) is in good agreement with the observed mean (1382 ± 702 m), the upper and lower tails of the plume height distribution tend to be slightly underrepresented. Furthermore, we compare plume heights simulated by the simple parametrization to a more complex, analytical plume model. Major differences in global plume height distributions are found for the lowest 1.5 km, but reasonable agreement is observed for higher plumes. In a second step, fire radiative power (FRP) as reported in the global fire assimilation system (GFAS) is used to simulate plume heights for observed fires globally for the period 2005–2011. The global fraction of simulated daytime plumes injecting emissions into the free troposphere (FT) ranges from 3.7 ± 0.7 to 5.2 ± 1.0 %. This range is comparable to results from observational studies, but it is much lower than results for prescribed plume heights in the ECHAM6-HAM2 standard setup. Nevertheless, occasionally deep emission injections exceeding 5–7 km in height are simulated for intense fires and favorable meteorological conditions. The application of a prescribed diurnal cycle in FRP turns out to be of minor importance. For a hypothetical doubling in FRP, moderate changes in plume heights of 100–400 m are simulated. These small changes indicate that a potential future increase in fire intensity will only slightly impact the emission heights on a global scale.

Details

show
hide
Language(s): eng - English
 Dates: 2014-122015-062015-07-012015-07-01
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.5194/acp-15-7155-2015
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : MACC-III
Grant ID : -
Funding program : Horizon 2020 (H2020)
Funding organization : European Commission ; DFG (EC)

Source 1

show
hide
Title: Atmospheric Chemistry and Physics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Katlenburg-Lindau, Germany : European Geosciences Union
Pages: - Volume / Issue: 15 Sequence Number: - Start / End Page: 7155 - 7171 Identifier: ISSN: 1680-7316
CoNE: https://pure.mpg.de/cone/journals/resource/111030403014016