日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Fire emission heights in the climate system - Part 1: Global plume height patterns simulated by ECHAM6-HAM2

MPS-Authors
/persons/resource/persons136934

Veira,  Andreas
Emmy Noether Junior Research Group Fire in the Earth System, The Land in the Earth System, MPI for Meteorology, Max Planck Society;
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37207

Kloster,  Silvia
Emmy Noether Junior Research Group Fire in the Earth System, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons134756

Wilkenskjeld,  Stiig
Emmy Noether Junior Research Group Fire in the Earth System, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

acp-15-7155-2015.pdf
(出版社版), 3MB

付随資料 (公開)
There is no public supplementary material available
引用

Veira, A., Kloster, S., Wilkenskjeld, S., & Remy, S. (2015). Fire emission heights in the climate system - Part 1: Global plume height patterns simulated by ECHAM6-HAM2. Atmospheric Chemistry and Physics, 15, 7155-7171. doi:10.5194/acp-15-7155-2015.


引用: https://hdl.handle.net/11858/00-001M-0000-0027-9DAE-3
要旨
We use the global circulation model ECHAM6 extended by the aerosol module HAM2 to simulate global patterns in wildfire emission heights. Prescribed plume heights in ECHAM6 are replaced by an implementation of a simple, semi-empirical plume height parametrization. In a first step, the global performance of the plume height parametrization is evaluated for plumes reported in the Multiangle Imaging Spectroradiometer (MISR) Plume Height Project (MPHP) data set. Our results show that the parametrization simulates a largely reasonable global distribution of plume heights. While the modeled global mean plume height (1411 ± 646 m) is in good agreement with the observed mean (1382 ± 702 m), the upper and lower tails of the plume height distribution tend to be slightly underrepresented. Furthermore, we compare plume heights simulated by the simple parametrization to a more complex, analytical plume model. Major differences in global plume height distributions are found for the lowest 1.5 km, but reasonable agreement is observed for higher plumes. In a second step, fire radiative power (FRP) as reported in the global fire assimilation system (GFAS) is used to simulate plume heights for observed fires globally for the period 2005–2011. The global fraction of simulated daytime plumes injecting emissions into the free troposphere (FT) ranges from 3.7 ± 0.7 to 5.2 ± 1.0 %. This range is comparable to results from observational studies, but it is much lower than results for prescribed plume heights in the ECHAM6-HAM2 standard setup. Nevertheless, occasionally deep emission injections exceeding 5–7 km in height are simulated for intense fires and favorable meteorological conditions. The application of a prescribed diurnal cycle in FRP turns out to be of minor importance. For a hypothetical doubling in FRP, moderate changes in plume heights of 100–400 m are simulated. These small changes indicate that a potential future increase in fire intensity will only slightly impact the emission heights on a global scale.