Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Angstrom-resolved real-time dissection of electrochemically active noble metal interfaces

Shrestha, B. R., Baimpos, T., Raman, S., & Valtiner, M. (2014). Angstrom-resolved real-time dissection of electrochemically active noble metal interfaces. ACS Nano, 8(6), 5979-5987. doi:10.1021/nn501127n.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Shrestha, Buddha R.1, Autor           
Baimpos, Theodoros1, Autor           
Raman, Sangeetha1, Autor           
Valtiner, Markus1, Autor           
Affiliations:
1Interaction Forces and Functional Materials, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863357              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Catalysis; Corrosion; Liquids; Metallic compounds; Metals; Optical properties; Precious metals; Bioelectrochemical process; Electrochemical reactions; Electrochemical surfaces; electrochemisty; Oxide growth; Technological applications; Visualization of dynamic process; White-light interferometry
 Zusammenfassung: Electrochemical solid/liquid interfaces are critically important for technological applications and materials for energy storage, harvesting, and conversion. Yet, a real-time Angstrom-resolved visualization of dynamic processes at electrified solid liquid interfaces has not been feasible. Here we report a unique real-time atomistic view into dynamic processes at electrochemically active metal interfaces using white light interferometry in an electrochemical surface forces apparatus. This method allows simultaneous deciphering of both sides of an electrochemical interface-the solution and the metal side-with microsecond resolution under dynamically evolving reactive conditions that are inherent to technological systems in operando. Quantitative in situ analysis of the potentiodynamic electrochemical oxidation/reduction of noble metal surfaces shows that Angstrom thick oxides formed on Au and Pt are high-ik materials; that is, they are metallic or highly defect-rich semiconductors, while Pd forms a low-ik oxide. In contrast, under potentiostatic growth conditions, all noble metal oxides exhibit a low-ik behavior. On the solution side, we reveal hitherto unknown strong electrochemical reaction forces, which are due to temporary charge imbalance in the electric double layer caused by depletion/generation of charged species. The real-time capability of our approach reveals significant time lags between electron transfer, oxide reduction/oxidation, and solution side reaction during a progressing electrode process. Comparing the kinetics of solution and metal side responses provides evidence that noble metal oxide reduction proceeds via a hydrogen adsorption and subsequent dissolution/redeposition mechanism. The presented approach may have important implications for designing emerging materials utilizing electrified interfaces and may apply to bioelectrochemical processes and signal transmission.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2014-06-24
 Publikationsstatus: Erschienen
 Seiten: 9
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000338089200062
DOI: 10.1021/nn501127n
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: ACS Nano
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : American Chemical Society
Seiten: - Band / Heft: 8 (6) Artikelnummer: - Start- / Endseite: 5979 - 5987 Identifikator: Anderer: 1936-0851
CoNE: https://pure.mpg.de/cone/journals/resource/1936-0851