English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Gyrational modes of benzenelike magnetic vortex molecules

Adolff, C. F., Hänze, M., Pues, M., Weigand, M., & Meier, G. (2015). Gyrational modes of benzenelike magnetic vortex molecules. Physical Review B, 92(2): 024426. doi:10.1103/PhysRevB.92.024426.

Item is

Files

show Files
hide Files
:
PhysRevB.92.024426.pdf (Publisher version), 640KB
Name:
PhysRevB.92.024426.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2015
Copyright Info:
© American Physical Society
License:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.1103/PhysRevB.92.024426 (Publisher version)
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Adolff, Christian F.1, Author
Hänze, Max1, Author
Pues, Matthias1, Author
Weigand, Markus2, Author           
Meier, Guido1, 3, 4, 5, Author           
Affiliations:
1Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung, Universität Hamburg, 20355 Hamburg, Germany, ou_persistent22              
2Dept. Modern Magnetic Systems, Max Planck Institute for Intelligent Systems, Max Planck Society, ou_1497648              
3Dynamics and Transport in Nanostructures, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2074319              
4Ultrafast Electronics, Scientific Service Units, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2074323              
5The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany, ou_persistent22              

Content

show
hide
Free keywords: PACS numbers: 75.70.Kw, 02.20.−a, 68.37.Yz, 75.40.Gb
 Abstract: With scanning transmission x-ray microscopy we study six magnetostatically coupled vortices arranged in a ring that resembles a benzene molecule. Each vortex is contained in a ferromagnetic microdisk. When exciting one vortex of the ring molecule with an alternating magnetic high-frequency field, all six vortices perform gyrations around the equilibrium center positions in their disks. In a rigid particle model, we derive the dispersion relation for these modes. In contrast to carbon atoms, magnetic vortices have a core polarization that strongly influences the intervortex coupling. We make use of this state parameter to reprogram the dispersion relation of the vortex molecule experimentally by tuning a homogeneous and an alternating polarization pattern. In analogy to the benzene molecule, we observe motions that can be understood in terms of normal modes that are largely determined by the symmetry of the system.

Details

show
hide
Language(s): eng - English
 Dates: 2015-07-072015-02-122015-07-272015-07-01
 Publication Status: Issued
 Pages: 5
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1103/PhysRevB.92.024426
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review B
  Abbreviation : Phys. Rev. B
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Woodbury, NY : American Physical Society
Pages: - Volume / Issue: 92 (2) Sequence Number: 024426 Start / End Page: - Identifier: ISSN: 1098-0121
CoNE: https://pure.mpg.de/cone/journals/resource/954925225008