English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Network analysis and hidden phenotypes in large biological datasets

Lasser, J. (2015). Network analysis and hidden phenotypes in large biological datasets. Master Thesis, Georg-August-Universität, Göttingen.

Item is

Files

show Files
hide Files
:
2015_master_thesis_jana_lasser.pdf (Publisher version), 13MB
Name:
2015_master_thesis_jana_lasser.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Lasser, Jana1, Author           
Affiliations:
1Max Planck Research Group Physics of Biological Organization, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063293              

Content

show
hide
Free keywords: -
 Abstract: We develop a methodology for automated extraction of network information from a
large dataset containing images of Drosophila terminal cells. The dataset contains
images of larvae grown with different mutations prohibiting the expression of one
of four genes: Rab8, Myospheroid, Crumbs and Rhea. Larvae are also distinguished
based on their genetic background and growing temperature. The dataset is composed
of over 500 images which is a novelty for this field of research. This enables
us to find statistically highly significant results. We apply a supervised learning
approach to quantify the effect on discernability of each of the three growing conditions.
Using an unsupervised learning approach we find hidden phenotypes spanning
several of the already known phenotypes induced by the larva’s genotype. We find
that most of the information contained in network growth patterns is strongly tied
to network size. By analyzing deviations from the size dependence of network realization
we establish four main growth characteristics we call phenotypic trends.
We are also able to find very simple models describing cell branching behaviour and
distributions of tube lengths and tube radii.

Details

show
hide
Language(s): eng - English
 Dates: 2015-05-282015
 Publication Status: Published online
 Pages: XI, 103
 Publishing info: Göttingen : Georg-August-Universität
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: Master

Event

show

Legal Case

show

Project information

show

Source

show