Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Levy processes on a generalized fractal comb

Sandev, T., Iomin, A., & Mendez, V. (2016). Levy processes on a generalized fractal comb. Journal of Physics A, 49(35): 355001. doi:10.1088/1751-8113/49/35/355001.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1607.01620.pdf (Preprint), 299KB
Name:
1607.01620.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Sandev, Trifce1, Autor           
Iomin, Alexander2, Autor
Mendez, Vicenc2, Autor
Affiliations:
1Max Planck Institute for the Physics of Complex Systems, Max Planck Society, ou_2117288              
2external, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 MPIPKS: Stochastic processes
 Zusammenfassung: Comb geometry, constituted of a backbone and fingers, is one of the most simple paradigm of a two-dimensional structure, where anomalous diffusion can be realized in the framework of Markov processes. However, the intrinsic properties of the structure can destroy this Markovian transport. These effects can be described by the memory and spatial kernels. In particular, the fractal structure of the fingers, which is controlled by the spatial kernel in both the real and the Fourier spaces, leads to the Levy processes (Levy flights) and superdiffusion. This generalization of the fractional diffusion is described by the Riesz space fractional derivative. In the framework of this generalized fractal comb model, Levy processes are considered, and exact solutions for the probability distribution functions are obtained in terms of the Fox H-function for a variety of the memory kernels, and the rate of the superdiffusive spreading is studied by calculating the fractional moments. For a special form of the memory kernels, we also observed a competition between long rests and long jumps. Finally, we considered the fractal structure of the fingers controlled by a Weierstrass function, which leads to the power-law kernel in the Fourier space. This is a special case, when the second moment exists for superdiffusion in this competition between long rests and long jumps.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2016-07-222016-09-02
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000381302500003
DOI: 10.1088/1751-8113/49/35/355001
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Physics A
  Andere : Journal of Physics A: Mathematical and Theoretical
  Kurztitel : J. Phys. A
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Bristol : IOP Pub.
Seiten: - Band / Heft: 49 (35) Artikelnummer: 355001 Start- / Endseite: - Identifikator: ISSN: 1751-8113
CoNE: https://pure.mpg.de/cone/journals/resource/954925513480_2