ausblenden:
Schlagwörter:
-
Zusammenfassung:
To develop a novel method for rapid myocardial T1 mapping at high spatial resolution.
METHODS:
The proposed strategy represents a single-shot inversion-recovery (IR) experiment triggered to early diastole during a brief breathhold. The measurement combines an adiabatic inversion pulse with a real-time readout by highly undersampled radial FLASH, iterative image reconstruction and T1 fitting with automatic deletion of systolic frames. The method was implemented on a 3 T MRI system using a GPU-equipped bypass computer for online application. Validations employed a T1 reference phantom including analyses at simulated heart rates from 40 to 100 bpm. In vivo applications involved myocardial T1 mapping in short-axis views of healthy young volunteers.
RESULTS:
At 1 mm in-plane resolution and 6 mm section thickness, the IR measurement could be shortened to 3 s without compromising T1 quantitation. Phantom studies demonstrated T1 accuracy and high precision for values ranging from 300 to 1500 ms and up to a heart rate of 100 bpm. Similar results were obtained in vivo yielding septal T1 values of 1246 ± 24 ms (base), 1256 ± 33 ms (mid-ventricular) and 1288 ± 30 ms (apex), respectively (mean ± SD, n=6).
CONCLUSION:
Diastolic myocardial T1 mapping with use of single-shot inversion-recovery FLASH offers high spatial resolution, T1 accuracy and precision, practical robustness and speed. Advances in knowledge: The proposed method will be beneficial for clinical applications relying on native and post-contrast T1 quantitation.