hide
Free keywords:
Computer Science, Artificial Intelligence, cs.AI,Computer Science, Computation and Language, cs.CL,Computer Science, Information Retrieval, cs.IR,cs.SI,Statistics, Machine Learning, stat.ML
Abstract:
Online health communities are a valuable source of information for patients
and physicians. However, such user-generated resources are often plagued by
inaccuracies and misinformation. In this work we propose a method for
automatically establishing the credibility of user-generated medical statements
and the trustworthiness of their authors by exploiting linguistic cues and
distant supervision from expert sources. To this end we introduce a
probabilistic graphical model that jointly learns user trustworthiness,
statement credibility, and language objectivity. We apply this methodology to
the task of extracting rare or unknown side-effects of medical drugs --- this
being one of the problems where large scale non-expert data has the potential
to complement expert medical knowledge. We show that our method can reliably
extract side-effects and filter out false statements, while identifying
trustworthy users that are likely to contribute valuable medical information.