English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Flower-specific jasmonate signaling regulates constitutive floral defenses in wild tobacco

Li, R., Wang, M., Wang, Y., Schuman, M. C., Weinhold, A., Schäfer, M., et al. (2017). Flower-specific jasmonate signaling regulates constitutive floral defenses in wild tobacco. Proceedings of the National Academy of Sciences of the United States of America, 114(34), E7205-E7214. doi:10.1073/pnas.1703463114.

Item is

Files

show Files
hide Files
:
ITB556.pdf (Publisher version), 4MB
 
File Permalink:
-
Name:
ITB556.pdf
Description:
-
Visibility:
Restricted (Max Planck Institute for Chemical Ecology, MJCO; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
ITB556s1.pdf (Supplementary material), 3MB
 
File Permalink:
-
Name:
ITB556s1.pdf
Description:
-
Visibility:
Restricted (Max Planck Institute for Chemical Ecology, MJCO; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
http://dx.doi.org/10.1073/pnas.1703463114 (Publisher version)
Description:
OA

Creators

show
hide
 Creators:
Li, Ran1, Author              
Wang, Ming1, 2, Author              
Wang, Yang1, Author              
Schuman, Meredith C.1, Author              
Weinhold, Arne1, Author              
Schäfer, Martin1, Author              
Jimenez-Aleman, Guillermo Hugo2, 3, Author              
Barthel, Andrea2, 4, Author              
Baldwin, Ian Thomas1, Author              
Affiliations:
1Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society, ou_24029              
2IMPRS on Ecological Interactions, MPI for Chemical Ecology, Max Planck Society, Jena, DE, ou_421900              
3Department of Bioorganic Chemistry, Prof. Dr. W. Boland, MPI for Chemical Ecology, Max Planck Society, ou_24028              
4Department of Entomology, Prof. D. G. Heckel, MPI for Chemical Ecology, Max Planck Society, ou_421895              

Content

show
hide
Free keywords: -
 Abstract: Optimal defense (OD) theory predicts that within a plant, tissues are defended in proportion to their fitness value and risk of predation. The fitness value of leaves varies greatly and leaves are protected by jasmonate (JA)-inducible defenses. Flowers are vehicles of Darwinian fitness in flowering plants and are attacked by herbivores and pathogens, but how they are defended is rarely investigated. We used Nicotiana attenuata, an ecological model plant with well-characterized herbivore interactions to characterize defense responses in flowers. Early floral stages constitutively accumulate greater amounts of two well-characterized defensive compounds, the volatile (E)-α-bergamotene and trypsin proteinase inhibitors (TPIs), which are also found in herbivore-induced leaves. Plants rendered deficient in JA biosynthesis or perception by RNA interference had significantly attenuated floral accumulations of defensive compounds known to be regulated by JA in leaves. By RNA-seq, we found a JAZ gene, NaJAZi, specifically expressed in early-stage floral tissues. Gene silencing revealed that NaJAZi functions as a flower-specific jasmonate repressor that regulates JAs, (E)-α-bergamotene, TPIs, and a defensin. Flowers silenced in NaJAZi are more resistant to tobacco budworm attack, a florivore. When the defensin was ectopically expressed in leaves, performance of Manduca sexta larvae, a folivore, decreased. NaJAZi physically interacts with a newly identified NINJA-like protein, but not the canonical NINJA. This NINJA-like recruits the corepressor TOPLESS that contributes to the suppressive function of NaJAZi on floral defenses. This study uncovers the defensive function of JA signaling in flowers, which includes components that tailor JA signaling to provide flower-specific defense.

Details

show
hide
Language(s):
 Dates: 2017-08-072017
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: ITB556
DOI: 10.1073/pnas.1703463114
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the National Academy of Sciences of the United States of America
  Other : Proc. Acad. Sci. USA
  Abbreviation : PNAS
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : National Academy of Sciences
Pages: - Volume / Issue: 114 (34) Sequence Number: - Start / End Page: E7205 - E7214 Identifier: ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230