Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Modeling antibiotic treatment in hospitals: a systematic approach shows benefits of combination therapy over cycling, mixing, and mono-drug therapies

Tepekule, B., Uecker, H., Derungs, I., Frenoy, A., & Bonhoeffer, S. (2017). Modeling antibiotic treatment in hospitals: a systematic approach shows benefits of combination therapy over cycling, mixing, and mono-drug therapies. PLoS Computational Biology, 13(9): e1005745. doi:10.1371/journal.pcbi.1005745.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
journal.pcbi.1005745.pdf (Verlagsversion), 4MB
Name:
journal.pcbi.1005745.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Tepekule, Burcu, Autor
Uecker, Hildegard1, Autor           
Derungs, Isabel, Autor
Frenoy, Antoine, Autor
Bonhoeffer, Sebastian, Autor
Affiliations:
1External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: drug therapy; antibiotic resistance; linear discriminant analysis; superinfection; antimicrobial resistance; antibiotics; optimization; mathematical models
 Zusammenfassung: Author summary For life-threatening infections, antibiotics need to be administered as soon as possible. Because it takes time to acquire data about the disease causing bacteria, the immediate treatment is often empiric. In particular, there are three treatment strategies discussed in the field of empiric treatment: cycling, mixing, and combination therapy. Despite a number of clinical and theoretical studies, it still remains unclear which treatment strategy best prevents the emergence of resistance and why. To address this controversy, we present a mathematical model capturing both mono- and multi-drug therapies. We sample and analyze a large parameter space to assess the effect of parameters on treatment success, and determine which treatment strategy is the best under which circumstances. Using methods such as linear discriminant analysis and particle swarm optimisation, we find that combination therapy outperforms the other strategies by a large margin for most of the biologically relevant parameter space. We also show that the rate of de novo emergence of double resistance and the costs of resistance mutations are the most important parameters determining whether combination therapy succeeds over the others.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-03-202017-08-282017-09-152017-09
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1371/journal.pcbi.1005745
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: PLoS Computational Biology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: San Francisco, CA : Public Library of Science
Seiten: - Band / Heft: 13 (9) Artikelnummer: e1005745 Start- / Endseite: - Identifikator: ISSN: 1553-734X
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000017180_1