日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Multilevel Monte Carlo Method for Statistical Model Checking of Hybrid Systems

Soudjani, S., Majumdar, R., & Nagapetyan, T. (2017). Multilevel Monte Carlo Method for Statistical Model Checking of Hybrid Systems. Retrieved from http://arxiv.org/abs/1706.08270.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0000-ED3B-4 版のパーマリンク: https://hdl.handle.net/21.11116/0000-0000-ED3C-3
資料種別: 成果報告書

ファイル

表示: ファイル
非表示: ファイル
:
arXiv:1706.08270.pdf (プレプリント), 540KB
ファイルのパーマリンク:
https://hdl.handle.net/21.11116/0000-0000-ED3D-2
ファイル名:
arXiv:1706.08270.pdf
説明:
File downloaded from arXiv at 2018-03-23 09:17 Accepted in the 14th International Conference on Quantitative Evaluation of Systems (QEST), 2017
OA-Status:
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
http://arxiv.org/help/license

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Soudjani, Sadegh1, 著者           
Majumdar, Rupak1, 著者           
Nagapetyan, Tigran2, 著者
所属:
1Group R. Majumdar, Max Planck Institute for Software Systems, Max Planck Society, ou_2105292              
2External Organizations, ou_persistent22              

内容説明

表示:
非表示:
キーワード: cs.SY,Computer Science, Logic in Computer Science, cs.LO,Mathematics, Probability, math.PR,
 要旨: We study statistical model checking of continuous-time stochastic hybrid systems. The challenge in applying statistical model checking to these systems is that one cannot simulate such systems exactly. We employ the multilevel Monte Carlo method (MLMC) and work on a sequence of discrete-time stochastic processes whose executions approximate and converge weakly to that of the original continuous-time stochastic hybrid system with respect to satisfaction of the property of interest. With focus on bounded-horizon reachability, we recast the model checking problem as the computation of the distribution of the exit time, which is in turn formulated as the expectation of an indicator function. This latter computation involves estimating discontinuous functionals, which reduces the bound on the convergence rate of the Monte Carlo algorithm. We propose a smoothing step with tunable precision and formally quantify the error of the MLMC approach in the mean-square sense, which is composed of smoothing error, bias, and variance. We formulate a general adaptive algorithm which balances these error terms. Finally, we describe an application of our technique to verify a model of thermostatically controlled loads.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2017-06-262017
 出版の状態: オンラインで出版済み
 ページ: 16 p.
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): arXiv: 1706.08270
URI: http://arxiv.org/abs/1706.08270
BibTex参照ID: Soudjani_arXiv1706.08270
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物

表示: