English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A new approach to manipulate the fate of single neural stem cells in tissue.

Taverna, E., Haffner, C., Pepperkok, R., & Huttner, W. B. (2012). A new approach to manipulate the fate of single neural stem cells in tissue. Nature Neuroscience, 15(2), 329-337.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Taverna, Elena1, Author           
Haffner, Christiane1, Author           
Pepperkok, Rainer, Author
Huttner, Wieland B.1, Author           
Affiliations:
1Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society, ou_2340692              

Content

show
hide
Free keywords: -
 Abstract: A challenge in the field of neural stem cell biology is the mechanistic dissection of single stem cell behavior in tissue. Although such behavior can be tracked by sophisticated imaging techniques, current methods of genetic manipulation do not allow researchers to change the level of a defined gene product on a truly acute time scale and are limited to very few genes at a time. To overcome these limitations, we established microinjection of neuroepithelial/radial glial cells (apical progenitors) in organotypic slice culture of embryonic mouse brain. Microinjected apical progenitors showed cell cycle parameters that were indistinguishable to apical progenitors in utero, underwent self-renewing divisions and generated neurons. Microinjection of single genes, recombinant proteins or complex mixtures of RNA was found to elicit acute and defined changes in apical progenitor behavior and progeny fate. Thus, apical progenitor microinjection provides a new approach to acutely manipulating single neural stem and progenitor cells in tissue.

Details

show
hide
Language(s):
 Dates: 2012
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 645219
Other: 4880
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Neuroscience
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 15 (2) Sequence Number: - Start / End Page: 329 - 337 Identifier: -