Researcher Portfolio
Huttner, Wieland B.
Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society
Researcher Profile
Position: Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society
Researcher ID: https://pure.mpg.de/cone/persons/resource/persons219252
External references
WorldCat
Search for Huttner, Wieland B.
Google Scholar
Search for Huttner, Wieland B.
Publications
(1 - 25 of 208)
: Huttner, W. (2024). Human-specific gene ARHGAP11B-potentially an additional tool in the treatment of neurodegenerative diseases? Frontiers in molecular medicine, 4: 1465647. doi:10.3389/fmmed.2024.1465647. [PubMan] : Namba, T., & Huttner, W. (2024). What Makes Us Human: Insights from the Evolution and Development of the Human Neocortex. Annual review of cell and developmental biology, 40(1), 427-452. doi:10.1146/annurev-cellbio-112122-032521. [PubMan] : Xing, L., Huttner, W., & Namba, T. (2024). Role of cell metabolism in the pathophysiology of brain size-associated neurodevelopmental disorders. Neurobiology of disease, 199: 106607. doi:10.1016/j.nbd.2024.106607. [PubMan] : Xing, L., Gkini, V., Nieminen, A. I., Zhou, H.-C., Aquilino, M., Naumann, R., Reppe, K., Tanaka, K., Carmeliet, P., Heikinheimo, O., Pääbo, S., Huttner, W., & Namba, T. (2024). Functional synergy of a human-specific and an ape-specific metabolic regulator in human neocortex development. Nature communications, 15(1): 3468. doi:10.1038/s41467-024-47437-8. [PubMan] : Wilsch-Bräuninger, M., Peters, J., & Huttner, W. (2024). High-resolution 3D ultrastructural analysis of developing mouse neocortex reveals long slender processes of endothelial cells that enter neural cells. Frontiers in cell and developmental biology, 12: 1344734. doi:10.3389/fcell.2024.1344734. [PubMan] : Dehay, C., & Huttner, W. (2024). Development and evolution of the primate neocortex from a progenitor cell perspective. Development (Cambridge, England), 151(4): dev199797. doi:10.1242/dev.199797. [PubMan] : Huttner, W., Heide, M., Mora-Bermúdez, F., & Namba, T. (2024). Neocortical neurogenesis in development and evolution-Human-specific features. The Journal of comparative neurology, 532(2): e25576. doi:10.1002/cne.25576. [PubMan] : Luppi, A. I., Girn, M., Rosas, F. E., Timmermann, C., Roseman, L., Erritzoe, D., Nutt, D. J., Stamatakis, E. A., Spreng, R. N., Xing, L., Huttner, W., & Carhart-Harris, R. L. (2024). A role for the serotonin 2A receptor in the expansion and functioning of human transmodal cortex. Brain: a journal of neurology, 147(1), 56-80. doi:10.1093/brain/awad311. [PubMan] : Heide, M., & Huttner, W. (2023). Causes of microcephaly in human-theoretical considerations. Frontiers in neuroscience, 17: 1306166. doi:10.3389/fnins.2023.1306166. [PubMan] : Tynianskaia, L., Eşiyok, N., Huttner, W., & Heide, M. (2023). Targeted Microinjection and Electroporation of Primate Cerebral Organoids for Genetic Modification. Journal of visualized experiments: JoVE, (193): e65176, pp. 1-1. doi:10.3791/65176. [PubMan] : Pinson, A., Maricic, T., Zeberg, H., Pääbo, S., & Huttner, W. (2023). Response to Comment on "Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals". Science (New York, N.Y.), 379(6636), 2212-2212. doi:10.1126/science.adf2212. [PubMan] : Zhang, K., Silva, F. D., Seidl, C., Wilsch-Bräuninger, M., Herbst, J., Huttner, W., & Niehrs, C. (2023). Primary cilia are WNT-transducing organelles whose biogenesis is controlled by a WNT-PP1 axis. Developmental cell, 58(2), 139-154. doi:10.1016/j.devcel.2022.12.006. [PubMan] : Fischer, J., Ortuño, E. F., Marsoner, F., Artioli, A., Peters, J., Namba, T., Oegema, C. E., Huttner, W., Ladewig, J., & Heide, M. (2022). Human-specific ARHGAP11B ensures human-like basal progenitor levels in hominid cerebral organoids. EMBO reports, 23(11): e54728, pp. 1-1. doi:10.15252/embr.202254728. [PubMan] : Pinson, A., Xing, L., Namba, T., Kalebic, N., Peters, J., Oegema, C. E., Traikov, S., Reppe, K., Riesenberg, S., Maricic, T., Derihaci, R., Wimberger, P., Pääbo, S., & Huttner, W. (2022). Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals. Science (New York, N.Y.), 377(6611): eabl6422. 6422. doi:10.1126/science.abl6422. [PubMan] : Mora-Bermúdez, F., Kanis, P., Macak, D., Peters, J., Naumann, R., Xing, L., Sarov, M., Winkler, S., Oegema, C. E., Haffner, C., Wimberger, P., Riesenberg, S., Maricic, T., Huttner, W., & Pääbo, S. (2022). Longer metaphase and fewer chromosome segregation errors in modern human than Neanderthal brain development. Science advances, 8(30): eabn7702. doi:10.1126/sciadv.abn7702. [PubMan] : Long, K. S., & Huttner, W. (2022). The Role of the Extracellular Matrix in Neural Progenitor Cell Proliferation and Cortical Folding During Human Neocortex Development. Frontiers in cellular neuroscience, 15: 804649. doi:10.3389/fncel.2021.804649. [PubMan] : Vaid, S., & Huttner, W. (2022). Progenitor-Based Cell Biological Aspects of Neocortex Development and Evolution. Frontiers in cell and developmental biology, 10: 892922. doi:10.3389/fcell.2022.892922. [PubMan] : Mora-Bermúdez, F., & Huttner, W. (2022). What Are the Human-Specific Aspects of Neocortex Development? Frontiers in neuroscience, 16: 878950. doi:10.3389/fnins.2022.878950. [PubMan] : Xing, L., Wilsch-Bräuninger, M., & Huttner, W. (2021). How neural stem cells contribute to neocortex development. Biochemical Society transactions, 49(5), 1997-2006. doi:10.1042/BST20200923. [PubMan] : Silva, F. D., Zhang, K., Pinson, A., Fatti, E., Wilsch-Bräuninger, M., Herbst, J., Vidal, V., Schedl, A., Huttner, W., & Niehrs, C. (2021). Mitotic WNT signalling orchestrates neurogenesis in the developing neocortex. EMBO journal, The, 40(19): e108041. doi:10.15252/embj.2021108041. [PubMan] : Kerimoglu, C., Pham, L., Tonchev, A. B., Sakib, M. S., Xie, Y., Sokpor, G., Ulmke, P. A., Kaurani, L., Abbas, E., Nguyen, H., Rosenbusch, J., Michurina, A., Capece, V., Angelova, M., Maricic, N., Brand-Saberi, B., Esgleas, M., Albert, M., Minkov, R., Kovachev, E., Teichmann, U., Seong, R. H., Huttner, W., Nguyen, H. P., Stoykova, A., Staiger, J. F., Fischer, A., & Tuoc, T. (2021). H3 acetylation selectively promotes basal progenitor proliferation and neocortex expansion. Science advances, 7(38): eabc6792. doi:10.1126/sciadv.abc6792. [PubMan] : Schlusche, A. K., Vay, S. U., Kleinenkuhnen, N., Sandke, S., Campos-Martín, R., Florio, M., Huttner, W., Tresch, A., Roeper, J., Rueger, M. A., Jakovcevski, I., Stockebrand, M., & Isbrandt, D. (2021). Developmental HCN channelopathy results in decreased neural progenitor proliferation and microcephaly in mice. Proceedings of the National Academy of Sciences of the United States of America, 118(35): e2009393118. doi:10.1073/pnas.2009393118. [PubMan] : Corbeil, D., & Huttner, W. B. (2021). Protein tyrosine sulfation. In J. Jez (Ed. ), Encyclopedia of Biological Chemistry: Vol. 3 (3rd ed.) (pp. 192-205). Amsterdam, Netherlands: Elsevier. [PubMan] : Xing, L., Kubik-Zahorodna, A., Namba, T., Pinson, A., Florio, M., Prochazka, J., Sarov, M., Sedlacek, R., & Huttner, W. (2021). Expression of human-specific ARHGAP11B in mice leads to neocortex expansion and increased memory flexibility. The EMBO journal, 40(13): 107093. doi:10.15252/embj.2020107093. [PubMan] : Stepien, B., Vaid, S., Naumann, R., Holtz, A., & Huttner, W. (2021). Generation of interspecies mouse-rat chimeric embryos by embryonic stem (ES) cell microinjection. STAR protocols, 2(2): 100494. doi:10.1016/j.xpro.2021.100494. [PubMan]