Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  MLCapsule: Guarded Offline Deployment of Machine Learning as a Service

Hanzlik, L., Zhang, Y., Grosse, K., Salem, A., Augustin, M., Backes, M., et al. (2018). MLCapsule: Guarded Offline Deployment of Machine Learning as a Service. Retrieved from http://arxiv.org/abs/1808.00590.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Forschungspapier

Dateien

einblenden: Dateien
ausblenden: Dateien
:
arXiv:1808.00590.pdf (Preprint), 2MB
Name:
arXiv:1808.00590.pdf
Beschreibung:
File downloaded from arXiv at 2018-10-17 13:27
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Hanzlik, Lucjan1, Autor
Zhang, Yang1, Autor
Grosse, Kathrin1, Autor
Salem, Ahmed1, Autor
Augustin, Max2, Autor           
Backes, Michael1, Autor           
Fritz, Mario1, Autor           
Affiliations:
1External Organizations, ou_persistent22              
2Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society, ou_1116547              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Computer Science, Cryptography and Security, cs.CR,Computer Science, Artificial Intelligence, cs.AI,Computer Science, Learning, cs.LG,Statistics, Machine Learning, stat.ML
 Zusammenfassung: With the widespread use of machine learning (ML) techniques, ML as a service
has become increasingly popular. In this setting, an ML model resides on a
server and users can query the model with their data via an API. However, if
the user's input is sensitive, sending it to the server is not an option.
Equally, the service provider does not want to share the model by sending it to
the client for protecting its intellectual property and pay-per-query business
model. In this paper, we propose MLCapsule, a guarded offline deployment of
machine learning as a service. MLCapsule executes the machine learning model
locally on the user's client and therefore the data never leaves the client.
Meanwhile, MLCapsule offers the service provider the same level of control and
security of its model as the commonly used server-side execution. In addition,
MLCapsule is applicable to offline applications that require local execution.
Beyond protecting against direct model access, we demonstrate that MLCapsule
allows for implementing defenses against advanced attacks on machine learning
models such as model stealing/reverse engineering and membership inference.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-08-012018
 Publikationsstatus: Online veröffentlicht
 Seiten: 14 p.
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 1808.00590
URI: http://arxiv.org/abs/1808.00590
BibTex Citekey: Hanzlik_arXiv1808.00590
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: