Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Coupling water and carbon fluxes to constrain estimates of transpiration: the TEA algorithm

Nelson, J. A., Carvalhais, N., Cuntz, M., Delpierre, N., Knauer, J., Oge, J., et al. (2018). Coupling water and carbon fluxes to constrain estimates of transpiration: the TEA algorithm. Journal of Geophysical Research: Biogeosciences, 123(12), 3617-3632. doi:10.1029/2018JG004727.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
BGC2961s1.pdf (Ergänzendes Material), 3MB
Name:
BGC2961s1.pdf
Beschreibung:
-
OA-Status:
Sonstiges
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
BGC2961.pdf (Verlagsversion), 4MB
Name:
BGC2961.pdf
Beschreibung:
-
OA-Status:
Sonstiges
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://doi.org/10.1029/2018JG004727 (Verlagsversion)
Beschreibung:
OA
OA-Status:
Sonstiges

Urheber

einblenden:
ausblenden:
 Urheber:
Nelson, Jacob A.1, 2, 3, Autor           
Carvalhais, Nuno3, Autor           
Cuntz, Matthias, Autor
Delpierre, Nicolas, Autor
Knauer, Jürgen2, 4, Autor           
Oge, Jrme, Autor
Migliavacca, Mirco5, Autor           
Reichstein, Markus6, Autor           
Jung, Martin6, Autor           
Affiliations:
1Global Diagnostic Modelling, Dr. Martin Jung, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1938311              
2IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry, Max Planck Society, Hans-Knöll-Str. 10, 07745 Jena, DE, ou_1497757              
3Model-Data Integration, Dr. Nuno Carvalhais, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1938310              
4Terrestrial Biosphere Modelling, Dr. Sönke Zähle, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1938309              
5Biosphere-Atmosphere Interactions and Experimentation, Dr. M. Migliavacca, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1938307              
6Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1688139              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Plant transpiration (T), biologically controlled movement of water from soil to atmosphere, currently lacks sufficient estimates in space and time to characterize global ecohydrology. Here we describe the Transpiration Estimation Algorithm (TEA), which uses both the signals of gross primary productivity (GPP) and evapotranspiration (ET) to estimate temporal patterns of water use efficiency (WUE, i.e. the ratio between GPP and T) from which T is calculated. The method first isolates periods when T is most likely to dominate ET. Then, a Random Forest Regressor is trained on WUE within the filtered periods, and can thus estimate WUE and T at every time‐step. Performance of the method is validated using terrestrial biosphere model output as synthetic flux datasets, i.e. flux data where WUE dynamics are encoded in the model structure and T is known. TEA reproduced temporal patterns of T with modeling efficiencies above 0.8 for all 3 models: JSBACH, MuSICA, and CASTANEA. Algorithm output is robust to dataset noise, but shows some sensitivity to sites and model structures with relatively constant evaporation levels, overestimating values of T while still capturing temporal patterns. Ability to capture between site variability in the fraction of T to total ET varied by model, with RMSE values between algorithm predicted and modeled T/ET ranging from 3 to 15 % depending on model. TEA provides a widely applicable method for estimating WUE while requiring minimal data and/or knowledge on physiology which can complement and inform the current understanding of underlying processes.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2018-11-232018-11-232018
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: Anderer: BGC2961
DOI: 10.1029/2018JG004727
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Geophysical Research: Biogeosciences
  Andere : J. Geophys. Res. - E
  Kurztitel : JGR-E
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: [Washington, DC] : American Geophysical Union
Seiten: - Band / Heft: 123 (12) Artikelnummer: - Start- / Endseite: 3617 - 3632 Identifikator: ISSN: 2169-8961
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000326920