English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Quantum Reidemeister torsion, open Gromov–Witten invariants and a spectral sequence of OH

Charette, F. (2019). Quantum Reidemeister torsion, open Gromov–Witten invariants and a spectral sequence of OH. International Mathematics Research Notices, 2019(8), 2483-2518. doi:10.1093/imrn/rnx195.

Item is

Files

show Files
hide Files
:
Charette_Quantum Reidemeister torsion, open Gromov–Witten invariants and a spectral sequence of OH_2019.pdf (Publisher version), 415KB
 
File Permalink:
-
Name:
Charette_Quantum Reidemeister torsion, open Gromov–Witten invariants and a spectral sequence of OH_2019.pdf
Description:
-
OA-Status:
Visibility:
Restricted ( Max Planck Society (every institute); )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
Charette_Quantum Reidemeister torsion, open Gromov–Witten invariants and a spectral sequence of OH_oa_2019.pdf (Preprint), 530KB
Name:
Charette_Quantum Reidemeister torsion, open Gromov–Witten invariants and a spectral sequence of OH_oa_2019.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
https://doi.org/10.1093/imrn/rnx195 (Publisher version)
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Charette, François1, Author           
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: -
 Abstract: We adapt classical Reidemeister torsion to monotone Lagrangian submanifolds using the pearl complex of Biran and Cornea. The definition involves generic choices of data and we identify a class of Lagrangians for which this torsion is invariant and can be computed in terms of genus zero open Gromov–Witten invariants. This class is defined by a vanishing property of a spectral sequence of Oh in Lagrangian Floer theory.

Details

show
hide
Language(s): eng - English
 Dates: 2019
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 742982
DOI: 10.1093/imrn/rnx195
URI: https://doi.org/10.1093/imrn/rnx195
Other: https://arxiv.org/abs/1503.00460
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: International Mathematics Research Notices
  Alternative Title : IMRN
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Oxford University Press
Pages: - Volume / Issue: 2019 (8) Sequence Number: - Start / End Page: 2483 - 2518 Identifier: -