English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
EndNote (UTF-8)
 
DownloadE-Mail
  Real embedding and equivariant eta forms

Liu, B. (2019). Real embedding and equivariant eta forms. Mathematische Zeitschrift, 292(3-4), 849-878. doi:10.1007/s00209-018-2119-9.

Item is

Files

hide Files
:
arXiv:1706.07121.pdf (Preprint), 422KB
Name:
arXiv:1706.07121.pdf
Description:
File downloaded from arXiv at 2019-09-05 11:56
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Liu_Real embedding and equivariant eta forms_2019.pdf (Publisher version), 664KB
 
File Permalink:
-
Name:
Liu_Real embedding and equivariant eta forms_2019.pdf
Description:
-
OA-Status:
Visibility:
Restricted ( Max Planck Society (every institute); )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

hide
Locator:
https://doi.org/10.1007/s00209-018-2119-9 (Publisher version)
Description:
-
OA-Status:

Creators

hide
 Creators:
Liu, Bo1, Author           
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

hide
Free keywords: Mathematics, Differential Geometry
 Abstract: Bismut and Zhang (Math Ann 295(4):661–684,
1993) establish a mod Z embedding formula
of Atiyah–Patodi–Singer reduced eta invariants. In this paper, we explain the hidden mod Z
term as a spectral flow and extend this embedding formula to the equivariant family case. In this case, the spectral flow is generalized to the equivariant Chern character of some equivariant Dai–Zhang higher spectral flow.

Details

hide
Language(s): eng - English
 Dates: 2019
 Publication Status: Issued
 Pages: 30
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

hide
Title: Mathematische Zeitschrift
  Abbreviation : Math. Z.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Springer
Pages: - Volume / Issue: 292 (3-4) Sequence Number: - Start / End Page: 849 - 878 Identifier: -