Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  A second order fully-discrete linear energy stable scheme for a binary compressible viscous fluid model

Zhao, X., & Wang, Q. (2019). A second order fully-discrete linear energy stable scheme for a binary compressible viscous fluid model. Journal of Computational Physics, 395, 382-409. doi:10.1016/j.jcp.2019.06.030.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1809.05487.pdf (Preprint), 3MB
Name:
1809.05487.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Zhao, Xueping1, Autor           
Wang, Qi2, Autor
Affiliations:
1Max Planck Institute for the Physics of Complex Systems, Max Planck Society, ou_2117288              
2external, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 MPIPKS: Structure formation and active systems
 Zusammenfassung: We present a linear, second order fully discrete numerical scheme on a staggered grid for a thermodynamically consistent hydrodynamic phase field model of binary compressible fluid flows, derived from the generalized Onsager Principle. The hydrodynamic model possesses not only the variational structure in its constitutive equation, but also warrants the mass, linear momentum conservation as well as energy dissipation. We first reformulate the model using the energy quadratization method into an equivalent form and then discretize the reformulated model to obtain a semidiscrete partial differential equation system using the Crank-Nicolson method in time. The semi-discrete numerical scheme preserves the mass conservation and energy dissipation law in time. Then, we discretize the semidiscrete PDE system on a staggered grid in space to arrive at a fully discrete scheme using 2nd order finite difference methods, which respects a discrete energy dissipation law. We prove the unique solvability of the linear system resulting from the fully discrete scheme. Mesh refinements and numerical examples on phase separation due to spinodal decomposition in binary polymeric fluids and interface evolution in the gas-liquid mixture are presented to show the convergence property and the usefulness of the new scheme in applications, respectively. (C) 2019 Elsevier Inc. All rights reserved.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2019-06-132019-10-15
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000479317200021
DOI: 10.1016/j.jcp.2019.06.030
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Computational Physics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Amsterdam : Elsevier
Seiten: - Band / Heft: 395 Artikelnummer: - Start- / Endseite: 382 - 409 Identifikator: ISSN: 0021-9991
CoNE: https://pure.mpg.de/cone/journals/resource/954922645031