Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Rapid Exploration of Topological Band Structures using Deep Learning

Peano, V., Sapper, F., & Marquardt, F. (2021). Rapid Exploration of Topological Band Structures using Deep Learning. Physical Review X, 11(2): 021052. doi:10.1103/PhysRevX.11.021052.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2019_Rapid_Exploration.png (Ergänzendes Material), 47KB
Name:
2019_Rapid_Exploration.png
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
image/png / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
PhysRevX.11.021052.pdf (beliebiger Volltext), 3MB
Name:
PhysRevX.11.021052.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Peano, Vittorio1, Autor           
Sapper, Florian1, 2, Autor
Marquardt, Florian1, 2, Autor           
Affiliations:
1Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society, ou_2421700              
2Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The design of periodic nanostructures allows to tailor the transport of photons, phonons, and matter waves for specific applications. Recent years have seen a further expansion of this field by engineering topological properties. However, what is missing currently are efficient ways to rapidly explore and optimize band structures and to classify their topological characteristics for arbitrary unit-cell geometries. In this work, we show how deep learning can address this challenge. We introduce an approach where a neural network first maps the geometry to a tight-binding model. The tight-binding model encodes not only the band structure but also the symmetry properties of the Bloch waves. This allows us to rapidly categorize a large set of geometries in terms of their band representations, identifying designs for fragile topologies. We demonstrate that our method is also suitable to calculate strong topological invariants, even when (like the Chern number) they are not symmetry indicated. Engineering of domain walls and optimization are accelerated by orders of magnitude. Our method directly applies to any passive linear material, irrespective of the symmetry class and space group. It is general enough to be extended to active and nonlinear metamaterials.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-06-08
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1103/PhysRevX.11.021052
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Physical Review X
  Kurztitel : Phys. Rev. X
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: New York, NY : American Physical Society
Seiten: - Band / Heft: 11 (2) Artikelnummer: 021052 Start- / Endseite: - Identifikator: Anderer: 2160-3308
CoNE: https://pure.mpg.de/cone/journals/resource/2160-3308