English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A note on the Drinfeld associator for genus-zero superstring amplitudes in twisted de Rham theory

Kaderli, A. (2020). A note on the Drinfeld associator for genus-zero superstring amplitudes in twisted de Rham theory. Journal of Physics A. doi:10.1088_1751-8121_ab9462.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0005-78DD-C Version Permalink: http://hdl.handle.net/21.11116/0000-0006-C714-3
Genre: Journal Article

Files

show Files
hide Files
:
1912.09406.pdf (Preprint), 816KB
Name:
1912.09406.pdf
Description:
File downloaded from arXiv at 2020-01-14 09:57
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Kaderli_2020_J._Phys._A _Math._Theor._10.1088_1751-8121_ab9462.pdf (Publisher version), 882KB
Name:
Kaderli_2020_J._Phys._A _Math._Theor._10.1088_1751-8121_ab9462.pdf
Description:
Open Access Accepted Manuscript
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Kaderli, André1, Author              
Affiliations:
1Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_24014              

Content

show
hide
Free keywords: High Energy Physics - Theory, hep-th,Mathematical Physics, math-ph,Mathematics, Algebraic Geometry, math.AG,Mathematics, Mathematical Physics, math.MP
 Abstract: The string corrections of tree-level open-string amplitudes can be described by Selberg integrals satisfying a Knizhnik-Zamolodchikov (KZ) equation. This allows for a recursion of the $\alpha'$-expansion of tree-level string corrections in the number of external states using the Drinfeld associator. While the feasibility of this recursion is well-known, we provide a mathematical description in terms of twisted de Rham theory and intersection numbers of twisted forms. In particular, this leads to purely combinatorial expressions for the matrix representation of the Lie algebra generators appearing in the KZ equation in terms of directed graphs. This, in turn, admits efficient algorithms for symbolic and numerical computations using adjacency matrices of directed graphs and is a crucial step towards analogous recursions and algorithms at higher genera.

Details

show
hide
Language(s):
 Dates: 2019-12-192020
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: arXiv: 1912.09406
URI: http://arxiv.org/abs/1912.09406
DOI: 10.1088_1751-8121_ab9462
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Physics A
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -