English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A note on the Drinfeld associator for genus-zero superstring amplitudes in twisted de Rham theory

Kaderli, A. (2020). A note on the Drinfeld associator for genus-zero superstring amplitudes in twisted de Rham theory. Journal of Physics A, 53(41): 415401. doi:10.1088_1751-8121_ab9462.

Item is

Files

hide Files
:
1912.09406.pdf (Preprint), 816KB
Name:
1912.09406.pdf
Description:
File downloaded from arXiv at 2020-01-14 09:57
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Kaderli_2020_J._Phys._A _Math._Theor._10.1088_1751-8121_ab9462.pdf (Publisher version), 882KB
Name:
Kaderli_2020_J._Phys._A _Math._Theor._10.1088_1751-8121_ab9462.pdf
Description:
Open Access Accepted Manuscript
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Kaderli_2020_J._Phys._A _Math._Theor._53_415401.pdf (Publisher version), 3MB
Name:
Kaderli_2020_J._Phys._A _Math._Theor._53_415401.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

hide
 Creators:
Kaderli, André1, Author           
Affiliations:
1Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_24014              

Content

hide
Free keywords: High Energy Physics - Theory, hep-th,Mathematical Physics, math-ph,Mathematics, Algebraic Geometry, math.AG,Mathematics, Mathematical Physics, math.MP
 Abstract: The string corrections of tree-level open-string amplitudes can be described
by Selberg integrals satisfying a Knizhnik-Zamolodchikov (KZ) equation. This
allows for a recursion of the $\alpha'$-expansion of tree-level string
corrections in the number of external states using the Drinfeld associator.
While the feasibility of this recursion is well-known, we provide a
mathematical description in terms of twisted de Rham theory and intersection
numbers of twisted forms. In particular, this leads to purely combinatorial
expressions for the matrix representation of the Lie algebra generators
appearing in the KZ equation in terms of directed graphs. This, in turn, admits
efficient algorithms for symbolic and numerical computations using adjacency
matrices of directed graphs and is a crucial step towards analogous recursions
and algorithms at higher genera.

Details

hide
Language(s):
 Dates: 2019-12-1920202020
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

hide
Title: Journal of Physics A
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 53 (41) Sequence Number: 415401 Start / End Page: - Identifier: -