Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Look before you Hop: Conversational Question Answering over Knowledge Graphs Using Judicious Context Expansion

Christmann, P., Saha Roy, R., Abujabal, A., Singh, J., & Weikum, G. (2019). Look before you Hop: Conversational Question Answering over Knowledge Graphs Using Judicious Context Expansion. Retrieved from http://arxiv.org/abs/1910.03262.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Forschungspapier

Dateien

einblenden: Dateien
ausblenden: Dateien
:
arXiv:1910.03262.pdf (Preprint), 2MB
Name:
arXiv:1910.03262.pdf
Beschreibung:
File downloaded from arXiv at 2020-01-21 10:25
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Christmann, Philipp1, Autor           
Saha Roy, Rishiraj1, Autor           
Abujabal, Abdalghani2, Autor           
Singh, Jyotsna1, Autor           
Weikum, Gerhard1, Autor           
Affiliations:
1Databases and Information Systems, MPI for Informatics, Max Planck Society, ou_24018              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Computer Science, Information Retrieval, cs.IR,Computer Science, Computation and Language, cs.CL
 Zusammenfassung: Fact-centric information needs are rarely one-shot; users typically ask
follow-up questions to explore a topic. In such a conversational setting, the
user's inputs are often incomplete, with entities or predicates left out, and
ungrammatical phrases. This poses a huge challenge to question answering (QA)
systems that typically rely on cues in full-fledged interrogative sentences. As
a solution, we develop CONVEX: an unsupervised method that can answer
incomplete questions over a knowledge graph (KG) by maintaining conversation
context using entities and predicates seen so far and automatically inferring
missing or ambiguous pieces for follow-up questions. The core of our method is
a graph exploration algorithm that judiciously expands a frontier to find
candidate answers for the current question. To evaluate CONVEX, we release
ConvQuestions, a crowdsourced benchmark with 11,200 distinct conversations from
five different domains. We show that CONVEX: (i) adds conversational support to
any stand-alone QA system, and (ii) outperforms state-of-the-art baselines and
question completion strategies.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2019-10-082019-11-052019
 Publikationsstatus: Online veröffentlicht
 Seiten: 10 p.
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 1910.03262
URI: http://arxiv.org/abs/1910.03262
BibTex Citekey: Christmann_arXiv1910.03262
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: