Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Look before you Hop: Conversational Question Answering over Knowledge Graphs Using Judicious Context Expansion

MPG-Autoren
/persons/resource/persons244397

Christmann,  Philipp
Databases and Information Systems, MPI for Informatics, Max Planck Society;

/persons/resource/persons185343

Saha Roy,  Rishiraj
Databases and Information Systems, MPI for Informatics, Max Planck Society;

/persons/resource/persons244399

Singh,  Jyotsna
Databases and Information Systems, MPI for Informatics, Max Planck Society;

/persons/resource/persons45720

Weikum,  Gerhard
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

arXiv:1910.03262.pdf
(Preprint), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Christmann, P., Saha Roy, R., Abujabal, A., Singh, J., & Weikum, G. (2019). Look before you Hop: Conversational Question Answering over Knowledge Graphs Using Judicious Context Expansion. Retrieved from http://arxiv.org/abs/1910.03262.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-83DC-F
Zusammenfassung
Fact-centric information needs are rarely one-shot; users typically ask
follow-up questions to explore a topic. In such a conversational setting, the
user's inputs are often incomplete, with entities or predicates left out, and
ungrammatical phrases. This poses a huge challenge to question answering (QA)
systems that typically rely on cues in full-fledged interrogative sentences. As
a solution, we develop CONVEX: an unsupervised method that can answer
incomplete questions over a knowledge graph (KG) by maintaining conversation
context using entities and predicates seen so far and automatically inferring
missing or ambiguous pieces for follow-up questions. The core of our method is
a graph exploration algorithm that judiciously expands a frontier to find
candidate answers for the current question. To evaluate CONVEX, we release
ConvQuestions, a crowdsourced benchmark with 11,200 distinct conversations from
five different domains. We show that CONVEX: (i) adds conversational support to
any stand-alone QA system, and (ii) outperforms state-of-the-art baselines and
question completion strategies.