Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Shaping Giant Membrane Vesicles in 3D-Printed Protein Hydrogel Cages

Jia, H., Litschel, T., Heymann, M., Eto, H., Franquelim, H. G., & Schwille, P. (2020). Shaping Giant Membrane Vesicles in 3D-Printed Protein Hydrogel Cages. Small, 1906259. doi:10.1002/smll.201906259.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
smll.201906259.pdf (Verlagsversion), 6MB
Name:
smll.201906259.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
© 2020 The Authors.
:
smll201906259-sup-0001-suppmat.pdf (Ergänzendes Material), 2MB
Name:
smll201906259-sup-0001-suppmat.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Jia, Haiyang1, Autor           
Litschel, Thomas1, Autor           
Heymann, Michael1, Autor           
Eto, Hiromune1, Autor           
Franquelim, Henri G.1, Autor           
Schwille, Petra1, Autor           
Affiliations:
1Schwille, Petra / Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565169              

Inhalt

einblenden:
ausblenden:
Schlagwörter: UNILAMELLAR VESICLES; CELL; ORGANIZATION; CURVATURE; RECONSTITUTION; OSCILLATIONS; SEPARATION; TENSION; PHASES3D printing; bottom-up synthetic biology; hydrogels; membranes; Min system;
 Zusammenfassung: Giant unilamellar phospholipid vesicles are attractive starting points for constructing minimal living cells from the bottom-up. Their membranes are compatible with many physiologically functional modules and act as selective barriers, while retaining a high morphological flexibility. However, their spherical shape renders them rather inappropriate to study phenomena that are based on distinct cell shape and polarity, such as cell division. Here, a microscale device based on 3D printed protein hydrogel is introduced to induce pH-stimulated reversible shape changes in trapped vesicles without compromising their free-standing membranes. Deformations of spheres to at least twice their aspect ratio, but also toward unusual quadratic or triangular shapes can be accomplished. Mechanical force induced by the cages to phase-separated membrane vesicles can lead to spontaneous shape deformations, from the recurrent formation of dumbbells with curved necks between domains to full budding of membrane domains as separate vesicles. Moreover, shape-tunable vesicles are particularly desirable when reconstituting geometry-sensitive protein networks, such as reaction-diffusion systems. In particular, vesicle shape changes allow to switch between different modes of self-organized protein oscillations within, and thus, to influence reaction networks directly by external mechanical cues.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020
 Publikationsstatus: Online veröffentlicht
 Seiten: 10
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: ISI: 000516657400001
DOI: 10.1002/smll.201906259
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : GRK2062, Molecular Principles of Synthetic Biology
Grant ID : -
Förderprogramm : -
Förderorganisation : Deutsche Forschungsgemeinschaft (DFG)
Projektname : -
Grant ID : SFB 863
Förderprogramm : -
Förderorganisation : DFG

Quelle 1

einblenden:
ausblenden:
Titel: Small
  Andere : Small
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Weinheim, Germany : Wiley-VCH
Seiten: - Band / Heft: - Artikelnummer: 1906259 Start- / Endseite: - Identifikator: ISSN: 1613-6810
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000017440_1