Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution

Dionigi, F., Zeng, Z., Sinev, I., Merzdorf, T., Deshpande, S., Lopez, M. B., et al. (2020). In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nature Communications, 11: 2522. doi:10.1038/s41467-020-16237-1.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
s41467-020-16237-1.pdf (Verlagsversion), 2MB
Name:
s41467-020-16237-1.pdf
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2020
Copyright Info:
The Author(s)

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Dionigi, Fabio1, Autor
Zeng, Zhenhua2, Autor
Sinev, Ilya3, 4, Autor           
Merzdorf, Thomas1, Autor
Deshpande, Siddarth2, Autor
Lopez, Miguel Bernal3, 4, Autor
Kunze, Sebastian3, 4, Autor           
Zegkinoglou, Ioannis3, 4, Autor           
Sarodnik, Hannes1, Autor
Fan, Dingxin2, Autor
Bergmann, Arno1, 4, Autor                 
Drnec, Jakub5, Autor
Araujo, Jorge Ferreira De1, Autor
Gilech, Manuel1, Autor
Teschner, Detre6, 7, Autor                 
Zhu, Jing8, Autor
Li, Weixue8, Autor
Greeley, Jeffrey P.2, Autor
Roldan Cuenya, Beatriz4, Autor                 
Strasser, Peter1, Autor
mehr..
Affiliations:
1Electrochemical Energy, Catalysis, Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Strasse des 17. Juni 124, Berlin 10623, Germany, ou_persistent22              
2Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States, ou_persistent22              
3Department of Physics, Ruhr-University Bochum, Universitaetsstrasse 150, Bochum, 44801, Germany, ou_persistent22              
4Interface Science, Fritz Haber Institute, Max Planck Society, ou_2461712              
5European Synchrotron Radiation Facility, ID 31 Beamline, BP 220, F-38043, Grenoble, France, ou_persistent22              
6Inorganic Chemistry, Fritz Haber Institute, Max Planck Society, ou_24023              
7Max Planck Institute for Chemical Energy Conversion, Max Planck Society, Mülheim an der Ruhr, DE, ou_3023867              
8CAS Excellence Center for Nanoscience, Hefei National Laboratory for Physical Sciences at Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China, ou_persistent22              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: NiFe and CoFe (MFe) layered double hydroxides (LDHs) are among the most active electrocatalysts for the alkaline oxygen evolution reaction (OER). Herein, we combine electrochemical measurements, operando X-ray scattering and absorption spectroscopy, and density functional theory (DFT) calculations to elucidate the catalytically active phase, reaction center and the OER mechanism. We provide the first direct atomic-scale evidence that, under applied anodic potentials, MFe LDHs oxidize from as-prepared α-phases to activated γ-phases. The OER-active γ-phases are characterized by about 8% contraction of the lattice spacing and switching of the intercalated ions. DFT calculations reveal that the OER proceeds via a Mars van Krevelen mechanism. The flexible electronic structure of the surface Fe sites, and their synergy with nearest-neighbor M sites through formation of O-bridged Fe-M reaction centers, stabilize OER intermediates that are unfavorable on pure M-M centers and single Fe sites, fundamentally accounting for the high catalytic activity of MFe LDHs.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2020-03-302020-04-212020-05-202020-05
 Publikationsstatus: Erschienen
 Seiten: 10
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/s41467-020-16237-1
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

ausblenden:
Projektname : OPERANDOCAT - In situ and Operando Nanocatalysis: Size, Shape and Chemical State Effects
Grant ID : 725915
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

ausblenden:
Titel: Nature Communications
  Kurztitel : Nat. Commun.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: 10 Band / Heft: 11 Artikelnummer: 2522 Start- / Endseite: - Identifikator: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723