English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Model-based approach for predicting the impact of genetic modifications on product yield in biopharmaceutical manufacturing—Application to influenza vaccine production

Duvigneau, S., Dürr, R., Laske, T., Bachmann, M., Dostert, M., & Kienle, A. (2020). Model-based approach for predicting the impact of genetic modifications on product yield in biopharmaceutical manufacturing—Application to influenza vaccine production. PLoS Computational Biology, 16(6): e1007810. doi:10.1371/journal.pcbi.1007810.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0007-1BF0-C Version Permalink: http://hdl.handle.net/21.11116/0000-0007-43DD-5
Genre: Journal Article

Files

show Files
hide Files
:
duerr_3255667.pdf (Publisher version), 4MB
Name:
duerr_3255667.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
Copyright:©2020Duvigneauet al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,provided the original author and source are credited.

Locators

show

Creators

show
hide
 Creators:
Duvigneau, Stefanie1, Author
Dürr, Robert2, Author              
Laske, Tanja3, Author              
Bachmann, Mandy3, Author              
Dostert, Melanie3, Author              
Kienle, Achim1, 2, Author              
Affiliations:
1Otto-von-Guericke-Universität Magdeburg, External Organizations, ou_1738156              
2Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738153              
3Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738140              

Content

show

Details

show
hide
Language(s): eng - English
 Dates: 2020
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1371/journal.pcbi.1007810
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: PLoS Computational Biology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: San Francisco, CA : Public Library of Science
Pages: - Volume / Issue: 16 (6) Sequence Number: e1007810 Start / End Page: - Identifier: ISSN: 1553-734X
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000017180_1