Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Using restricted factor analysis with latent moderated structures to detect uniform and nonuniform measurement bias: A simulation study

Barendse, M. T., Oort, F. J., & Garst, G. J. A. (2010). Using restricted factor analysis with latent moderated structures to detect uniform and nonuniform measurement bias: A simulation study. AStA Advances in Statistical Analysis, 94, 117-127. doi:10.1007/s10182-010-0126-1.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Barendse_etal_2010_Using restricted factor analysis with....pdf (Verlagsversion), 283KB
Name:
Barendse_etal_2010_Using restricted factor analysis with....pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2010
Copyright Info:
This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Barendse, M. T.1, Autor           
Oort, F. J., Autor
Garst, G. J. A., Autor
Affiliations:
1University of Amsterdam, Amsterdam, The Netherlands, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Factor analysis is an established technique for the detection of measurement bias. Multigroup factor analysis (MGFA) can detect both uniform and nonuniform bias. Restricted factor analysis (RFA) can also be used to detect measurement bias, albeit only uniform measurement bias. Latent moderated structural equations (LMS) enable the estimation of nonlinear interaction effects in structural equation modelling. By extending the RFA method with LMS, the RFA method should be suited to detect nonuniform bias as well as uniform bias. In a simulation study, the RFA/LMS method and the MGFA method are compared in detecting uniform and nonuniform measurement bias under various conditions, varying the size of uniform bias, the size of nonuniform bias, the sample size, and the ability distribution. For each condition, 100 sets of data were generated and analysed through both detection methods. The RFA/LMS and MGFA methods turned out to perform equally well. Percentages of correctly identified items as biased (true positives) generally varied between 92% and 100%, except in small sample size conditions in which the bias was nonuniform and small. For both methods, the percentages of false positives were generally higher than the nominal levels of significance.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2010-05-262010
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1007/s10182-010-0126-1
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: AStA Advances in Statistical Analysis
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 94 Artikelnummer: - Start- / Endseite: 117 - 127 Identifikator: ISSN: 1863-8171
ISSN: 1863-818X