Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Chaos and Complexity from Quantum Neural Network: A study with Diffusion Metric in Machine Learning

Choudhury, S., Dutta, A., & Ray, D. (2021). Chaos and Complexity from Quantum Neural Network: A study with Diffusion Metric in Machine Learning. Journal of High Energy Physics, 2021(04): 138. doi:10.1007/JHEP04(2021)138.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2011.07145.pdf (Preprint), 660KB
Name:
2011.07145.pdf
Beschreibung:
File downloaded from arXiv at 2020-12-03 08:15
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
Choudhury2021_Article_ChaosAndComplexityFromQuantumN.pdf (Verlagsversion), 830KB
Name:
Choudhury2021_Article_ChaosAndComplexityFromQuantumN.pdf
Beschreibung:
Open Access
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Choudhury, Sayantan1, Autor           
Dutta, Ankan, Autor
Ray, Debisree, Autor
Affiliations:
1Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_24014              

Inhalt

einblenden:
ausblenden:
Schlagwörter: High Energy Physics - Theory, hep-th, Condensed Matter, Disordered Systems and Neural Networks, cond-mat.dis-nn,Computer Science, Learning, cs.LG,Nonlinear Sciences, Chaotic Dynamics, nlin.CD,Quantum Physics, quant-ph
 Zusammenfassung: In this work, our prime objective is to study the phenomena of quantum chaos
and complexity in the machine learning dynamics of Quantum Neural Network
(QNN). A Parameterized Quantum Circuits (PQCs) in the hybrid quantum-classical
framework is introduced as a universal function approximator to perform
optimization with Stochastic Gradient Descent (SGD). We employ a statistical
and differential geometric approach to study the learning theory of QNN. The
evolution of parametrized unitary operators is correlated with the trajectory
of parameters in the Diffusion metric. We establish the parametrized version of
Quantum Complexity and Quantum Chaos in terms of physically relevant
quantities, which are not only essential in determining the stability, but also
essential in providing a very significant lower bound to the generalization
capability of QNN. We explicitly prove that when the system executes limit
cycles or oscillations in the phase space, the generalization capability of QNN
is maximized. Moreover, a lower bound on the optimization rate is determined
using the well known Maldacena Shenker Stanford (MSS) bound on the Quantum
Lyapunov exponent.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2020-11-162021
 Publikationsstatus: Erschienen
 Seiten: 34 pages, 4 figures, 1 table, , This project is the part of the non-profit virtual international research consortium "Quantum Aspects of Space-Time and Matter (QASTM)"
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 2011.07145
DOI: 10.1007/JHEP04(2021)138
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of High Energy Physics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 2021 (04) Artikelnummer: 138 Start- / Endseite: - Identifikator: -