Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Gravitational-wave parameter estimation with autoregressive neural network flows

Green, S., Simpson, C., & Gair, J. (2020). Gravitational-wave parameter estimation with autoregressive neural network flows. Physical Review D, 102: 104057. doi:10.1103/PhysRevD.102.104057.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
2002.07656.pdf (Preprint), 2MB
Name:
2002.07656.pdf
Beschreibung:
File downloaded from arXiv at 2020-12-17 10:20
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
PhysRevD.102.104057.pdf (Verlagsversion), 2MB
Name:
PhysRevD.102.104057.pdf
Beschreibung:
Open Access
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Green, Stephen1, Autor           
Simpson, Christine, Autor
Gair, Jonathan1, Autor           
Affiliations:
1Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_1933290              

Inhalt

ausblenden:
Schlagwörter: Astrophysics, Instrumentation and Methods for Astrophysics, astro-ph.IM,Computer Science, Learning, cs.LG,General Relativity and Quantum Cosmology, gr-qc,Statistics, Machine Learning, stat.ML
 Zusammenfassung: We introduce the use of autoregressive normalizing flows for rapid
likelihood-free inference of binary black hole system parameters from
gravitational-wave data with deep neural networks. A normalizing flow is an
invertible mapping on a sample space that can be used to induce a
transformation from a simple probability distribution to a more complex one: if
the simple distribution can be rapidly sampled and its density evaluated, then
so can the complex distribution. Our first application to gravitational waves
uses an autoregressive flow, conditioned on detector strain data, to map a
multivariate standard normal distribution into the posterior distribution over
system parameters. We train the model on artificial strain data consisting of
IMRPhenomPv2 waveforms drawn from a five-parameter $(m_1, m_2, \phi_0, t_c,
d_L)$ prior and stationary Gaussian noise realizations with a fixed power
spectral density. This gives performance comparable to current best
deep-learning approaches to gravitational-wave parameter estimation. We then
build a more powerful latent variable model by incorporating autoregressive
flows within the variational autoencoder framework. This model has performance
comparable to Markov chain Monte Carlo and, in particular, successfully models
the multimodal $\phi_0$ posterior. Finally, we train the autoregressive latent
variable model on an expanded parameter space, including also aligned spins
$(\chi_{1z}, \chi_{2z})$ and binary inclination $\theta_{JN}$, and show that
all parameters and degeneracies are well-recovered. In all cases, sampling is
extremely fast, requiring less than two seconds to draw $10^4$ posterior
samples.

Details

ausblenden:
Sprache(n):
 Datum: 2020-02-182020
 Publikationsstatus: Erschienen
 Seiten: 14 pages, 7 figures
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 2002.07656
DOI: 10.1103/PhysRevD.102.104057
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Physical Review D
  Andere : Phys. Rev. D.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Lancaster, Pa. : American Physical Society
Seiten: - Band / Heft: 102 Artikelnummer: 104057 Start- / Endseite: - Identifikator: ISSN: 0556-2821
CoNE: https://pure.mpg.de/cone/journals/resource/111088197762258