English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Bookkeeping estimates of the net land-use change flux – a sensitivity study with the CMIP6 land-use dataset

Hartung, K., Bastos, A., Chini, L., Ganzenmüller, R., Havermann, F., Hurtt, G. C., et al. (2021). Bookkeeping estimates of the net land-use change flux – a sensitivity study with the CMIP6 land-use dataset. Earth System Dynamics, 12, 763-782. doi:10.5194/esd-12-763-2021.

Item is

Files

show Files
hide Files
:
ESB_Hartung_2020.pdf (Correspondence), 74KB
 
File Permalink:
-
Name:
ESB_Hartung_2020.pdf
Description:
Internal Approval Form
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
esd-12-763-2021.pdf (Publisher version), 4MB
Name:
esd-12-763-2021.pdf
Description:
Final Revised Paper
OA-Status:
Gold
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2021
Copyright Info:
© The Authors
:
esd-12-763-2021-supplement.pdf (Supplementary material), 2MB
Name:
esd-12-763-2021-supplement.pdf
Description:
-
OA-Status:
Gold
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
https://luh.umd.edu/ (Research data)
Description:
Input Dataset (LUH2)
OA-Status:
Miscellaneous

Creators

show
hide
 Creators:
Hartung, Kerstin, Author
Bastos, Ana, Author
Chini, Louise, Author
Ganzenmüller, Raphael, Author
Havermann, Felix, Author
Hurtt, George C., Author
Loughran, Tammas, Author
Nabel, Julia E. M. S.1, Author                 
Nützel, Tobias, Author
Obermeier, Wolfgang, Author
Pongratz, Julia, Author                 
Affiliations:
1Emmy Noether Junior Research Group Forest Management in the Earth System, The Land in the Earth System, MPI for Meteorology, Max Planck Society, ou_1832286              

Content

show
hide
Free keywords: -
 Abstract: The carbon flux due to land-use and land-cover change (net LULCC flux) historically contributed to a large fraction of anthropogenic carbon emissions while at the same time being associated with large uncertainties. This study aims to compare the contribution of several sensitivities underlying the net LULCC flux by assessing their relative importance in a bookkeeping model (BLUE) based on a LULCC dataset including uncertainty estimates (the LUH2 dataset). The sensitivity experiments build upon the approach of Hurtt et al. (2011) and compare the impacts of LULCC uncertainty (a high, baseline and low land- use estimate), the starting time of the bookkeeping model simulation (850, 1700 and 1850), net area transitions versus gross area transitions (shifting cultivation) and neglecting wood harvest on estimates of the net LULCC flux. Additional factorial experiments isolate the impact of uncertainty from initial conditions and transitions on the net LULCC flux. Finally, historical simulations are extended with future land-use scenarios to assess the impact of past LULCC uncertainty in future projections.

Over the period 1850–2014, baseline and low LULCC scenarios produce a comparable cumulative net LULCC flux while the high LULCC estimate initially produces a larger net LULCC flux which decreases towards the end of the period and even becomes smaller than in the baseline estimate. LULCC uncertainty leads to slightly higher sensitivity in the cumulative net LULCC flux (up to 22 %, reference are the baseline simulations) compared to the starting year of a model simulation (up to 15 %). The contribution from neglecting wood harvest activities (up to 28 % cumulative net LULCC flux) is larger than from LULCC uncertainty and the implementation of land-cover transitions (gross or net transitions) exhibits the smallest sensitivity (up to 13 %). At the end of the historical LULCC dataset in 2014, the LULCC uncertainty retains some impact on the net LULCC flux (±0.15 PgC yr−1 at an estimate of 1.7 PgC yr−1). Of the past uncertainties in LULCC, a small impact persists in 2099, mainly due to uncertainty of harvest remaining in 2014. However, compared to the uncertainty range of the LULCC flux estimated today, the estimates in 2099 appear to be indistinguishable.

These results, albeit from a single model, are important for CMIP6 as they compare the relative importance of starting year, uncertainty of LULCC, applying gross transitions and wood harvest on the net LULCC flux. For the cumulative net LULCC flux over the industrial period the uncertainty of LULCC is as relevant as applying wood harvest and gross transitions. However, LULCC uncertainty matters less (by about a factor three) than the other two factors for the net LULCC flux in 2014 and historical LULCC uncertainty is negligible for estimates of future scenarios.

Details

show
hide
Language(s): eng - English
 Dates: 2020-122021-05-132021-06-30
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.5194/esd-12-763-2021
BibTex Citekey: HartungBastosEtAl2021
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Earth System Dynamics
  Other : Earth Syst. Dyn.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York : Copernicus GmbH
Pages: - Volume / Issue: 12 Sequence Number: - Start / End Page: 763 - 782 Identifier: ISSN: 2190-4979
CoNE: https://pure.mpg.de/cone/journals/resource/2190-4979